Preference for Commitment

Mark Dean

Behavioral Economics G6943
Fall 2022



Introduction

In order to discuss preference for commitment we need to be
able to discuss preferences over menus

Interpretation: choosing a set of alternatives from which you
will make a choice at a later date.

What would be the standard way of assessing a menu of
options A = {ay, a2, a3, ...}?

Assume that you will choose the best option from the menu
at the later date

Then a menu A is preferred to menu B if the best option in A
is better than the best option in B

i.e.

B if and only if

b
maxu(a) = maxu(b)



Introduction

e For a ‘standard’ decision maker, more options to choose from
is always (weakly) better

e Add alternative a to a choice set A
o Either a is preferred to all the options already in A

e a will be chosen from the expanded choice set
e {a} UA is better than A

e Or there is some b in A which is preferred to a

e 3 will not be chosen from the expanded choice set
e {a} UA is no better, and no worse than A

e DM will always prefer to have a bigger menu to choose from

B C A
= A>B



Introduction

e This may not be the case if the DM suffers from problems of
temptation:

e Classic example: A dieter might prefer to a restaurant with
the menu

fish
salad

rather than one with the menu
fish

burger
salad

o Why?
e (At least) two possible reasons
@ Would prefer to not eat the burger, but worries they will
succumb to temptation if the burger is available
@® Thinks they will be able to overcome the temptation to eat the
burger, but it will be costly to do so



Introduction

e We are going to discuss a model of menu preferences and
choice that captures both these forces

e Based on the classic work of Gul and Pesendorfer [2001]

e Updated (and better explained) by Lipman and Pesendorfer
[2013]



Set Up

Let C be a compact metric space

A(C) set of all measures on the Borel o-algebra of C (i.e. all
lotteries)

e Use lotteries because it means set of choice objects is convex

Endow A(C) with topology of weak convergence

Z all non empty compact subsets of A(C) (Hausdorff
topology)

Let > be a preference relation on Z

o Interpretation: preference over menus from which you will later
get to choose

Let > be a preference relation on A(C)

o Interpretation: preferences when asked to choose from a menu



Mixing

e For x,y € Z and « € (0, 1) define

ax+ (1—a)y
= {p=ag+(1—-a)rfgex,rey,}

e Eg. ifx={6,}, y ={0p,0c} the
ax+ (1—a)y
{ aa+ (1—a)b }
xa+ (1 —a)c

e Mixture of all elements in menu x with all elements in menu y



Modelling Preference over Menus

e Using this set up we will place axioms on >~ and >

e First, we will consider conditions which are necessary and
sufficient for the standard model
e Single utility function
o Represents > (choice from menus)

e = (choice between menus) represented using largest utility in
the set

e Next, consider how to alter these axioms in order to generate
the 'Gul Pesendorfer’ model

o Allows for both 'temptation’ and 'self control’ to be expressed
in menu preferences



Basic Axioms

Axiom 1 (Preference Relations) =, B> are complete preference
relations



Basic Axioms

Axiom 2 (Independence) x > y implies
ax+(l—a)z=ay+(1—a)zV x,y,z€ Z,
a € (0,1)

e Notice that this is not the same as ‘standard’ independence
e Mixing operation is different
e Need to think a bit about how to interpret it



Basic Axioms

e Interpretation of independence: Standard Independence +
Indifference to Timing of Uncertainty

e Imagine we extended > to preferences over lotteries over

menus

e Independence would now say that, if we prefer choosing from x
to choosing from y then we prefer choosing from x a% of the
time (and z (1 — a)% of the time) to choosing from y a% of
the time (and z (1 — a)% of the time)

e Randomization occurs before choosing at second stage

e Claim: choosing contingent plans in this set up gives rise to
the same probability distribution over outcomes as come
about from 'Gul Pesendorfer’ mixing



Basic Axioms

e Example

1 4 1
X+ =z
2 2

x={x,x}, z={z1,n}

e Gul-Pesendorfer mixing: a menu of
%Xl + %21
?X2 + ?Zl
5X1+ 522
5X2 + 522

e 'Standard’ Mixing: 50% chance of menu x, 50% chance of
menu y

e Contingent plan: choose either x; or x» from x and either y;
or y» from y

e Uncertainty decided before second stage choice

e Set of contingent plans gives rise to same menu of lotteries
over olitcomes as doecs GP mixino



Basic Axioms

o If timing of resolution of uncertainty is not important there is
an equivalence between
e Choosing a contingent plan for a lottery over menus

e Choosing from a menu of lotteries generated by 'Gul
Pesendorfer’ mixing

e Thus, ‘standard’ independence and indifference to timing of
uncertainty give rise to GP independence



Basic Axioms

Axiom 3 (Sophistication) xU{p} = x=p>qV q € x

e This is the axiom that links together first and second stage
choice.

e Whether or not people are sophisticated is going to be an
important empirical question

e Do they understand the choices they will make from a given
menu?

e If not, may underestimate their degree of self control

e e.g. sign up for gym memberships they do not use

e or make costly commitments which they subsequently do not

stick to.



Basic Axioms

Axiom 4 (Continuity) Three continuity conditions:

® (Upper Semi Continuity): The sets
{z€ Z|z > x} and {p € A(C)|p> q} are
closed for all x and g

® (Lower vNM Continuity): x > y > z implies
ax+ (1 —a)z >~ y for some a € (0,1)

© (Lower Singleton Continuity): The sets
{p:{q} = {p}} are closed for every q



Standard Model

e The Standard Model of preference over menus

U(z) = maxu(p)

for some linear, continuous utility u: A(C) — R such that

e U represents >~
e u represents >



Standard Model

e Equivalent to axioms 1-4 and
xrmy=xUy~x

e x > y implies that the best alternative in x is weakly better
than the best alternative in y

e The best alternative in x U y is the same as the best
alternative in x

e Thus xUy ~ x

e Note that this implies
XDy=>Xxry

e Say y > x
e either x/y > y in which case

x=x/yUy~x/y=y=x

eory=x/y
x=x/yUy ~y=x



The Gul Pesendorfer Model

Preference over menus given by

U(x) = max[u(p) +v(p)] — maxv(q)

u: ‘long run’ utility
v : ‘temptation’ utility
Interpretation:

e Choose p to maximize u(p) + v(p)
e Suffer temptation cost v(p) — v(q)

Unlike the standard model, the Gul Pesendorfer model can
lead to strict preference for smaller choice sets

xDybutx=<y



Why Preference for Smaller Choice Sets?

Object | u | v
Salad |4 |0
Fish 211
Burger | 1 | 4

Case 1: Commitment

e Which menu would the DM prefer? {s} or {s, b}?

U({s})

U({s. b})

max (u(x) + v(x)) — max v(y)

44+0-0
4

e{s}

max (u(x) 4+ v(x)) — max_ v(y)

x€{s,b}
1+4—4

1

y€{s,b}



Why Preference for Smaller Choice Sets?

Case 1: Commitment

Object | u | v
Salad |4 |0
Fish 2|1
Burger | 1 | 4

Menu {s} preferred to {s.b}
Interpretation: b would be chosen from the latter menu

e u(b) 4+ v(b) > u(s) + v(s)
But s has higher long run utility
e u(s) > u(b)

The DM would rather not have bin their menu, because if it
is available they will choose it.



Why Preference for Smaller Choice Sets?

Case 1: Commitment

More generally, consider p, g, such that

Then

uU({p}) = ulp)
U({p.q})
U({q}} = ul(q)

Interpretation: give in to temptation and choose ¢

|
=
—~
Q
~—
_|_
<
—~
Q
~—
|
<
—~
Q
~—
Il
c
—~
Q
~—

‘Weak set betweenness’

{p} = {p.q} ~{a}



Why Preference for Smaller Choice Sets?

Case 2: Avoid ‘Willpower Costs’

Object | u | v
Salad |4 |0
Fish 211
Burger | 1 | 4

e Which menu would the DM prefer? {s} or {s, f}?

U({s})

U({s.f})

Xng?g}(U(X) +v(x)) - max v(y)

44+0-0

4

max (u(x)+ v(x)) — max v
max (u(x) +v(x) — max v(y)
440—-1

3



Why Preference for Smaller Choice Sets?
Case 2: Avoid ‘Willpower Costs’

Object | u | v
Salad |4 |0
Fish 211
Burger | 1 | 4

Menu {s} is preferred to menu {s, f}
However, this time, s would be chosen from both menus, as

u(s)+v(s) > u(f) + v(f)

The DM still prefers to have f removed from the menu
because it is more tempting: v(f) > v(s)

The DM is able to exert self control if both options are on the
menu, but it is costly to do so



Why Preference for Smaller Choice Sets?
Case 2: Avoid ‘Willpower Costs’

More generally, consider p, g, such that

u(p) > u(q)
v(g) > v(p)
u(p) +v(p) > u(q)+v(q)

Then
U({p}) = ulp)

U{p.q}) = u(p)+vip)—v(q)
U({q}} = u(q)

Interpretation: fight temptation, but this is costly
‘Strict set betweenness’

{p} = {p.q} = {q}



Temptation and Self Control

We say that g tempts p if {p} = {p, ¢}
We say that a decision maker exhibits self control at y if there
exists x, z such that xUz =y and

{x} = {y} = {2}

{x} > {y} implies there exists something in z which is
tempting relative to items in x

{y} > {z} implies tempting item not chosen

if it were then

max u(p) + v(p)

pEy

Uly)

IN

max u(p) + v(p) =

max (u(p) + v(p)) — maxv(q)

max (u(p) + v(p)) — maxv(q)
U(z)



Why 'Long Run’ and ‘Temptation’ Utilities?

e So far we have described v as 'long run’ utility and v as
‘temptation’ utility
e Why is this a behaviorally appropriate description?

e u describes choices over singleton menus:

U({p}) = ulp) +v(p) — v(p) = u(p)

and so describes preferences when the DM is not tempted



Why 'Long Run’ and ‘Temptation’ Utilities?

e v leads to temptation: g tempts p only if v(q) > v(p)
e Case 1: u(p) +v(p) > u(q) +v(q)

U({pr}) u({p. q})

u(p) > u(p) +v(p) — max v(r)
re{p,q}
re{p.q}

v(g) = e v(r) > v(p)

>
=
= max_v(r) > v(p)
=



Why 'Long Run’ and ‘Temptation’ Utilities?

e v leads to temptation: g tempts p only if v(q) > v(p)
e Case 2: u(q) +v(q) > u(p) + v(p)
U({r}) u({p,q})

u(p) > u(q) +v(q) — max v(r)
re{p.q}

>

=

= u(p)+ max v(r)>u(q)+v(q)
re{p.q}

=

max v(r) =v(q) > v(p)

e Last line follows from assumption u(q) + v(q) > u(p) + v(p)



Limiting Case: No Willpower

Imagine that differences in v are large relative to differences in
u

In the limit, model reduces to

U(x) = max u(p) st. v(p) > v(q) V q € x

This is the ‘Strolz’ model
Implies no strict set betweenness, and no self control

B — 6 model is of this class



Axiomatic Characterization of GP Model

e Set Betweenness: for any x,y st x = y

x=xUyry

e Notice the difference to the 'standard’ model
xXmy=xUyn~x

e Smaller sets can be strictly preferred



Axiomatic Characterization of GP Model

e Set Betweenness: for any x,y st x = y
xzxUyz=y

o Necessity:

e x >~ y implies that
u(p®) +v(p*) = v(g) = u(p”) + v(p’) — v(d")

where

p' = argmaxu(p) + v(p)
pei

and

q' = argmaxv(q)
qgel

e NTSx = xUy



Axiomatic Characterization of GP Model

e Two cases:
o Case 1: u(p®) +v(p*) > u

u(p*) + v(p)
u(p*) + v(p)
u(p*) +v(p*) — v(q")

—~

p’) +v(p)
u(p’) +v(p") =
u(P) + v(pY) =
u(pP?) +v(p) = v(g)

AV LY,

o Case 2: u(p*)+v(p*) <u(p’)+v(p¥)
o implies v(g*) < v(¢”) as x is preferred to y
u(p’) +v(p’)

V(quy)
u( ny) 4 v( ny) _ v(qXUy)

IAIE
c



Axiomatic Characterization of GP Model

Theorem
> satisfies Axioms 1, 2, 4 and set betweenness if and only if it has
a Strolz representation or a G-P representation

Theorem
The proper relation > and > satisfy Axioms 1-4 and set
betweenness if and only if

e > has a Stroltz representation and p > q if and only if
v(p) > v(q) or v(p) = v(q) and u(p) = u(q)
e or = has a G-P representation and u(p) + v(p) represents >



Sketch of Proof that Axioms Imply Representation

e Lemma 1: Axioms 1, 2, 4 imply a linear U : Z — R that
represents > and is continuous on singleton sets

e This is standard, and makes use of the mixture space axioms



Sketch of Proof that Axioms Imply Representation

Lemma 2: Show that
Ulx) = maxmin U({p.q})
= minmaxU({p.q})

e Utility depends only on ‘chosen element’, and ‘most tempting
element

Proof: Let o = maxpex mingex U({p, q}) = U({p*, q*})
Note that U({p*, q}) > U({p*.q*}) =aV qge A

Set betweenness implies & < U(Ugex{p*, q}) = U(x)
Also, for every p € A, 3 q, € A such that U({p, qp}) < &
By set betweenness i > U(Upca {p, qp}) = U(x)



Sketch of Proof that Axioms Imply Representation

e Lemma 3: Show that

U({x}) > U({xy}) > U({y})
U({a}) > U({a b}) > U({b})

implies

Ula{x,y} + (1 —a){a b})
= U({ax+(1-a)a),ay + (1 -a)b)})

e This comes straight from super independence and the fact that
ax + (1 —a)ais the best and ay + (1 — a)b the most
tempting element



Sketch of Proof that Axioms Imply Representation

e Define

u(p) = U({pr})

v(s:p.q.6) = U({p'q})_U({§1(1—5)q+(5s})

e u is the long run utility
e v is a measure of how tempting s is relative to p and g (under
the assumption p is chosen)



Sketch of Proof that Axioms Imply Representation

e Lemma 4: Show that, if
U({p}) > U({p. (1 8)r +3s}) > U({(1 - d)r +b5})

for all s € A(C), then

® U({p}) > U({p.s}) > U(s) = v(s;p,q.0) =
U({p.q}) — U({p.s})
® v(p;p.q.9) =U({p q})— U({p})

e Follows from Lemma 3



Sketch of Proof that Axioms Imply Representation

e Lemma 5: Show that, if

U({p}) > U({p.q}) > U({q})

and for some r and ¢

U({p}) > U({p. (1~ 6)r +3s}) > U({(1 — d)r + bs))

for all s € A(C), then

U({p.q})

=  max [u(w)+v(w;p,rd)]— max [v(z;p,r,0)]
we{p,q} ze{p.q}



Sketch of Proof that Axioms Imply Representation

e Proof (assuming)

U({p}) > U({p.q}) > U({q})

e By previous lemma

vigip.r,d) = U({p r})—U({p. q})
> U({p,r}) —U({r})
= v(pip,r,9)
and so
L max [v(zip,r.0)] = v(gip.r.0)
e Also

U({p}) + U({p,r}) —U({p}) = U{p, r}
U({q}) +U({p.r}) — U({p.q})

u(p) +v(p;p.r.9)
u(q) +v(g;p,r.o)

and so

max [u(w) + v(w;p,r,8)] = u(p) + v(p;p,r,0)
we{p.q}



Sketch of Proof that Axioms Imply Representation

e This then implies

U [u(w) + v(w;p,r,d)] — ,max, [v(z;p,r,0)]

u(p) +v(pip.r,6) —v(gip,r.o) (1)
U({p}) +U{p.r}) = U({p}) — U{p.r}) + U({p. q})
U({p.q}) (2)



Sketch of Proof that Axioms Imply Representation

e Finally, pick p, g such that

U({p}) > U({p.q}) > U({q})

(if such exists) and pick J such that

U({p}) > U({p, (1— 8)g+65}) > U({(1 — 86)q + bs})

for all s (which we can do by continuity)

e Define v(s) as v(s; p, g,9), and show that v(s;p, g, 9)
doesn't depend on the specifics of the last three parameters.

e Lemma 5 therefore gives

U({p.q}) = S [u(w) + v(w)] — ,max, [v(z)]

e Lemma 2 then extends this result to an arbitrary set A



Discussion: Linearity

Imagine

{p} = A{p.q} = {q} = {q.r} = {r}

DM can resist g for p and resist r for q.
e Can they resist r for p?

Under the GP model, the above implies

u(p) > u(q) > u(r)
v(r) > v(q) > v(p)
ulp)+vip) > u(qg)+v(g) > u(r)+v(r)

Which in turn implies
{p} = {p.r} = {r}

‘Self Control is Linear’
e See Noor and Takeoka [2010]



Discussion: What is Willpower?

It seems that the following statement is meaningful:

e Person A has the same long run preferences as person B
e Person A has the same temptation as person B
e Person A has more willpower than person B

Yet this is not possible in the GP model
Alternative: Masatlioglu, Nakajima and Ozdenoren [2019]
U(z) = maxu(p)
pez

i — <
subject to rcr;ez:l;(v(q) vip) < w

This paper uses a slightly different data set - ex ante
preferences and ex post choices



Discussion: Strict Set Betweenness and Random Strolz

Does {p} > {p, q} > {q} imply self control?
Imagine that you are a Strolz guy with u(p) > u(q), but are
not sure that you will be tempted

e Half the time
v(p) = v(q)
half the time
v(p) <v(q)
e Implies

U({p}) = ulp)
U{p.q}) = ulp) +ulq)

U({q}) = ul(q)

Strict set betweenness without self control



Discussion: Optimism

e Say with probability € won't be tempted so

U(z) = (1—¢)U(z) + emaxu(p)

pez

e Can lead to violations of set betweenness.

o Let g =gym, j = jog, t =tv

u(g) > u(j) > u(t)

(
v(g) v(j) < v(t)
u() +v() > u(t)+v(t) > u(g) +vig)

A



Discussion: Optimism

e For &€ small

{t.j} - {t.g}
U{t.j) = u()+v()—v(t)
U({t.g}) = u(t)
e but

{t.j.g}»{t.Jj}
as with probability € no temptation and will go to the gym



Preference for Flexibility

Consider choice between menus of drinks cocoa or lemonade

Must choose between menus now, but your choice from those
menus will occur on March 1st

Which would you prefer?

{c}, {I} or {c,I}?

Choice of {c, 1} over both {c} and {/} is a violation of set
betweenness



Preference for Flexibility

X : set of alternatives
S : set of states
1 € A(S): probability distribution over states
u:X x5 — IR: utility function
e u(x,s) utility of alternative x in state s

Preference uncertainty driven by uncertainty about s



Preference for Flexibility

Let A be a menu of alternatives
Choice from A will take place after the state is known

Value of A before the state is known given by

=Y u(s) maxu X, S)

seS

U represents choice between menus



Preference for Flexibility

The ‘preference uncertainty’ model implies a (potentially
strict) preference for larger choice sets

A-B=AUB > A
Compare to ‘standard’ model

A-B=AUB~A
And Set Betweenness

A-B=AUB=XA

Preference uncertainty can provide a powerful force that works
against a preference for commitment



Amador Angelitos and Wernig [2005]

e Amador Angelitos and Wernig consider the optimal form of
commitment in the face of time inconsistency and a need for
flexibility

o Consumption/savings problem

e Present bias (preference for commitment)
e but also a taste shock (preference for flexibility)

e Find conditions under which a 'minimum savings rule’ is
optimal

e Must save a minimum amount s
e Free to choose any level of consumption that is consistent with
this
e More generally, optimal commitment always exhibits
‘bunching at the top’



Two periods with ¢ consumed in the first period and k
consumed in the second

Total resource constraint is y, B(y) is the budget set
Utility of time 1 self is given by

0U(c) + W (k)
Utility of time O self is given by
E[0U(c) + W(k)]

6 is an (uncontractible) taste shock, unknown at time 0,
distributed according to F

Set Up



Set Up

e Key trade off:

e Time 0 agent wants to restrict time 1 agent to prevent them
from overconsuming

e But also wants to provide time 1 agent with the flexibility to
respond to 6

e How to solve?

o Can use classic tricks from the Princial-Agent literature



A Principal Agent Problem

Assume distribution of types is represented by continuous 6 on
Assume a direct mechanism: let u(6) = U(c(6)) and

w(0) = W(k(0)) be the utilities if the agent announces type
6

Value of menu for type 1 self 6 is
9 / /
V(6) = max {u(@ )+ w(6 )]
0'cO

Assuming truth telling, and by envelope theorem

Vi(6) u%@)




A Principal Agent Problem

e Integrating V' (6) tells us that

V(O) = Zu(8)+ w(8)

0
—u
B
1 / ;0
:/ﬂmmw+—mm+mm
B B
e As is standard in Principal agent problems, this condition plus
monotonicity are necessary and sufficient for incentive
compatibility



The Principal’'s Problem

e Choose {u, w} to maximize

[ (6u(e) + w(©)) £(6)d (6)

subject to

C(u(9)) + K(w(8)) <y

u(0") > u(9) for 0’ >0
e Where C=U"1land K=W"1



The Principal’'s Problem

e Can use the IC constraint to get rid of w

e Objective function becomes
0

5 ), 1= G@)u(e)d0

"ﬁ*w)m

where

G(0) = F(0) +6(1—p)f(6)
subject to

0.

W(y—C(u(9)))+ gu((?) — /: u(0')do' —

p

and monotonicity, where

1
B

u(0.)—w(bs) >0



Bunching at the Top

e It is always optimal to have some bunching at the top
Theorem

An optimal allocation (w, u*) satisfies u*(0) = u*(0,) for 6 > 6,
where 0, is the lowest value in © such that

/99(1— G(6'))d(6') <0

for0 > 0,



Bunching at the Top

e It is always optimal to have some bunching at the top

Proof.
The contribution of 6 > 6, to the objective function is

;/99(1— G(6))u(6)d6

rewriting u(6) = )+ fe 6) gives

;u(ep) / (1-G(6))do + / / G(0"))d (6')d0" de’



Minimal Savings Rule

It is always optimal for all types above a certain threshold
consume the same amount

This does not imply that a minimum savings rule is necessarily
optimal

For that we need one further condition
G(0) = F(0) +0(1—p)f(0)

is increasing for all 8 < 6,

If (and only if) this condition is satisfied, a simple minimal
savings rule is optimal



Sophistication

e So far, we have assumed that a DM is sophisticated

e They understand their second stage choice
e Implemented by the axiom xU {p} = x < p>qV g € x

e What about a DM who is not sophisticated?



Sophistication

Example 1: A DM who ignores temptation

Object | u | v
Salad |4 |0
Fish 2|1
Burger | 1 | 4

Assume these preferences represent choices that the DM will
make from the menu

But they believe that their choices will be governed by u

Such a DM will prefer {s, b} to {b}, but when faced with the
choice from {s, b} will choose b

e Such a DM will violate sophistication

Will never exhibit a preference for commitment



Sophistication

Example 2: A DM who underestimates temptation

Object | u | v |V
Salad |5 |0 |0
Fish 2111
Burger [ 1 |9 |5

Assume that a DM has temptation driven by v, but believes
that they have temptation driven by v/

They are offered the chance to buy a 'commitment contract’
where they have to pay $2 if they eat the burger

Assume that u(2) =2, v(2) = 2 the u of money is additive
with u of consumption and the v of money is additive with
the v of consumption

Let b+ ¢ be the burger with the commitment contract



Discussion: Sophistication

e Example 2: A DM who underestimates temptation

Object | u vV
Salad | 5 0|0
Fish 2 111
Burger | 1 915
B+C 11713

e The DM will have preferences
{b+c,s} > {b s}
U{b+c,s}) = u(s)+V(s)—V(b+c)=2
> 1=u(b)=U({b,s})

e But the DM will actually choose b + ¢ over s at the second
stage as

u(b+c)+v(b+c)=6>5=u(s)+ v(s)



Sophistication

e Example 2: A DM who underestimates temptation

Object | u vV
Salad | 5 0|0
Fish 2 1)1
Burger | 1 9|5
B+C -1]71/3

e End up with lower 'long run' utility

e Also a violation of sophistication as
{b+c¢,s} = {b+c}

but b + ¢ will be chosen from the former menu



Sophistication

e We will talk more about the evidence for and against
sophistication in two lectures time

e For more theory on the identification of naivety see

e Ahn, D. S, lijima, R., Le Yaouanq, Y., & Sarver, T. (2019).
Behavioural Characterizations of Naivete for Time-Inconsistent
Preferences. The Review of Economic Studies, 86(6),
2319-2355.



Summary

e Menu preferences allow us to formalize a model of preference

for commitment
e We argued that this is a sign that people have problems with

temptation
e Temptation: Preference for Commitment

A-B=AUB=XA

e Preference uncertainty: Preference for Flexibility
A=-B=AUB = A

e Compare to ‘standard’ model

A-B=AUB~A

e Gul and Pesendorfer provide a model which allows for both
temptation and self control

Ulx) = max[u(p) + v(p)] — maxv(q)

e Characterized by set betweenness: x = y = x> xUy = y
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