Behavioral Economics

Mark Dean

Final Exam

Friday 18th May

Question 1 (35 pts) We are going to consider preferences over compound lotteries. These are lotteries that give other lotteries as prizes. Let $\left\{p_{1}, q, p_{2}, r\right\}$ be the lottery that with probability p_{1} gives the lottery q, and with probability p_{2} gives the lottery r. For example, consider the lottery in which I flip a coin. If it comes down heads then I roll a die, and if I roll a 1 or 2 (out of 6) I give you $\$ 5$ (otherwise nothing). If it comes down heads, I roll a die, and if I get $1,2,3$ or 4 I give you $\$ 4$ (otherwise nothing). We would write this as

$$
\begin{aligned}
&\{0.5, q, 0.5, r\} \\
& q= \frac{1}{3} \$ 5, \frac{2}{3} \$ 0 \\
& r= \frac{2}{3} \$ 4, \frac{1}{3} \$ 0
\end{aligned}
$$

Call this example a. We will also write $\{q\}$ for the situation in which the DM receives the lottery $\{q\}$ for sure. (i.e., in the above example, $\{q\}$ would be a 100% chance of getting $\left.\frac{1}{3} \$ 5, \frac{2}{3} \$ 0\right)$

Here is one way of calculating the utility of the above lottery (1) calculate the expected utility $U(q)$ and $U(r)$. (2) calculate the utility of the compound lottery as

$$
U\left(\left\{p_{1}, q, p_{2}, r\right\}\right)=p_{1} U(q)+p_{2} U(r)
$$

We will call this recursive expected utility approach

1. Assume that the utility of amount $u(x)=x$. Calculate the recursive expected utility of the lottery of example a
2. Show that, for a recursive expected utility maximizer the compound lottery in example a is indifferent to receiving the lottery that gives $\$ 5$ with probability $\frac{1}{6}, \$ 4$ with probability $\frac{1}{3}$ and $\$ 0$ with probability $\frac{1}{2}$
3. Assume (for simplicity) that the lotteries we consider are over whole dollar amounts between $\$ 0$ and $\$ 10$. We say that preferences satisfy reduction of compound lotteries if, for ever compound lottery $\left\{p_{1}, q, p_{2}, r\right\}$

$$
\left\{p_{1}, q, p_{2}, r\right\} \text { is indifferent to the lottery }\{s\}
$$

Where s is the lottery such that, from each $x \in\{0,1, \ldots 10\} s(x)=p_{1} q(x)+p_{2} r(x)$ and $s(x), q(x)$ and $r(x)$ are, respectively, the probability assigned to x by the lotteries s, q and r

Show that the recursive expected utility approach satisfies the reduction of compound lotteries
4. Now consider another way of calculating the utility of a compound lottery. Let π be a cumulative probability weighting function. (1) use π to calculate the non-expected utility $\bar{U}(q)$ and $\bar{U}(r)$ of the lotteries q and r (i.e. using the cumulative probability weighting model) (2) calculate the non-expected utility as

$$
U\left(\left\{p_{1}, q, p_{2}, r\right\}\right)=\pi\left(p_{1}\right) \bar{U}(q)+\left(1-\pi\left(p_{1}\right)\right) \bar{U}(r)
$$

if $\bar{U}(q) \geq \bar{U}(r)$, or

$$
U\left(\left\{p_{1}, q, p_{2}, r\right\}\right)=\pi\left(p_{1}\right) \bar{U}(r)+\left(1-\pi\left(p_{1}\right)\right) \bar{U}(q)
$$

if $\bar{U}(r)>\bar{U}(q)$
We will call this the recursive non-expected utility approach.
Consider the recursive lottery in example (a). Show that the recursive non-expected utility approach does not necessarily satisfy the reduction of compound lotteries (Make life simple for yourself - assume $u(x)=x$ and remember that you can pick numbers for the probability weighting function, as long as $\left.\pi\left(\frac{1}{6}\right)<\pi\left(\frac{1}{3}\right)<\pi\left(\frac{1}{2}\right)<\pi\left(\frac{2}{3}\right)\right)$
5. If the probability weighting function is a power function, will the reduction of compound lotteries hold for the recursive lottery in example (a)? (if you get stuck, try it for $\pi(p)=p^{2}$.)

Question 2 (45 pts) Consider a decision maker who is choosing over what menu they want to choose from tomorrow. These menus can consist of subsets of three items: apples (a), bourbon (b) and (c) cigarillos. Say that the decision maker has a utility function u such

$$
\begin{aligned}
& u(a)=1 \\
& u(b)=2 \\
& u(c)=3
\end{aligned}
$$

Say that the decision maker is standard: i.e. from any menu they will choose the best object in that menu, and so value the menu according to its best option. Let \unrhd represent preferences over menus

1. Calculate the utility of the 7 possible menus that can be constructed from subsets of $\{a, b, c\}$
2. Notice that we can write the utility of a menu X as

$$
U(X)=\max _{x \in X} u(x)
$$

Verify that a preference function \unrhd that can be represented by this utility function satisfies the property that, if $X \unrhd Y$, then $X \sim X \cup Y$ (If you can show this for general case, at least show its true for the 7 menus you looked at in part 1)
3. Does \unrhd satisfy set betweenness (again, do the general case if you can, or if not, then show its true for the 7 menus in part 1)
4. Now consider a decision maker who does not know what sort of mood they will be in tomorrow. With a 50% chance they think that they will want to be unhealthy, in which case they will have the utility function u (from section 1 above). with a 50% chance they think that they will wake up wanting to be healthy, in which case they will have the utility function v

$$
\begin{aligned}
v(a) & =3 \\
v(b) & =2 \\
v(c) & =1
\end{aligned}
$$

They calculate the utility of a menu by calculating the expected utility of that menu: i.e., for a menu containing $\{a, b\}$, there is a 50% chance that they will wake up with
utility function u. In this case b is better than a, and so they will choose b and get utility $u(b)$. With 50% chance they will wake up with utility function v, in which case a is better than b and, they will choose a and get utility $v(a)$. Thus the utility of this set is $\{a, b\}$ is given by $U(\{a, b\})=0.5 u(b)+0.5 v(a)$

Calculate the utility for this decision maker of the 7 possible menus that can be constructed from $\{a, b, c\}$
5. Do the preferences over menus of this decision maker satisfy the condition described in (2) above?
6. Do they satisfy set betweenness?
7. Now consider a general description of this type of preferences (sometimes called a preference for flexibility): Let Ω be a set of alternatives, and assume that the decision maker has a set of moods M. Each mood occurs with probability $p(m)$, and each mood gives rise to a utility function u_{m} over the objects in Ω. For any subset X of Ω, the utility of that subset is calculated as

$$
U(X)=\sum_{m \in M} p(m) \max _{x \in X} u_{m}(x)
$$

where $\max _{x \in X} u_{m}(x)$ is the highest utility obtainable in X according to the utility function u_{m}

Show that a decision maker who assesses menus in this way will satisfy the following condition:

$$
\begin{aligned}
X & \supseteq Y \\
& \Rightarrow X \unrhd Y
\end{aligned}
$$

8. Show that they will also satisfy the following condition

$$
\begin{aligned}
X & \sim X \cup Y \\
\text { implies that, for any } Z & \subset \Omega \\
X \cup Z & \sim X \cup Y \cup Z
\end{aligned}
$$

9. We sometimes describe a decision maker as sophisticated if $X \cup\{x\} \triangleright X$ if and only if x will be chosen from the menu $X \cup\{x\}$. Will the preferences described at the start of the question satisfy this description of sophistication?
10. Show that the preferences in section 7 will not satisfy sophistication (i.e., there is a chance that $X \cup\{x\} \triangleright X$, but x would not be chosen from the second stage menu). Can you think of a new definition of sophistication that would be satisfied by these preferences?

Question 3 (20 pts) Consider the following game (sometimes called the Nash Bargaining game).
Two players have to share $\$ 10$. Each player makes a bid b_{1} and b_{2}, which can be any number between 0 and 10. If $b_{1}+b_{2} \leq 10$, then each player receives their bid. If $b_{1}+b_{2}>10$ then each player receives zero. These bids are made simultaneously. Assume that utility is linear in money.

1. Show that assuming standard preferences, a pair of strategies $\left\{b_{1}, b_{2}\right\}$ is a Nash Equilibrium if $b_{1}+b_{2}=10$. Are these the only Nash Equilibria of this game? (Remember, a Nash Equilibrium is a pair of strategies $\left\{b_{1}, b_{2}\right\}$ such that b_{1} is the best that player 1 can do, given b_{2}, and b_{2} is the best that player 2 can do given b_{1})
2. Imagine that player 1 has standard preferences, and player 2 has inequality averse preferences with $\alpha>0$. Show that there is a threshold for \bar{b} such that, if $b_{2}<\bar{b}$, then $\left\{b_{1}, b_{2}\right\}$ such that $b_{1}+b_{2}=10$ is not a Nash Equilibrium. Calculate \bar{b} as a function of α
3. Again imagine that player 1 has standard preferences, and player 2 has inequality averse preferences. Is it always the case that, if $b_{2}>\bar{b}$, then $\left\{b_{1}, b_{2}\right\}$ such that $b_{1}+b_{2}=10$ is a Nash Equilibrium of the game? What if $\beta>0.5$?
