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Question 1 (35 pts)

We are going to consider preferences over compound lotteries. These are lotteries that give other lotteries
as prizes. Let {p1, q, p2, r} be the lottery that with probability p1 gives the lottery q, and with probability
p2 gives the lottery r. For example, consider the lottery in which I �ip a coin. If it comes down heads then
I roll a die, and if I roll a 1 or 2 (out of 6) I give you $5 (otherwise nothing). If it comes down heads, I roll
a die, and if I get 1,2 ,3 or 4 I give you $4 (otherwise nothing). We would write this as

{0.5, q, 0.5, r}

q =
1

3
$5,

2

3
$0

r =
2

3
$4,

1

3
$0

Call this example a. We will also write {q} for the situation in which the DM receives the lottery {q} for
sure. (i.e., in the above example, {q} would be a 100% chance of getting 1

3$5, 23$0)

Here is one way of calculating the utility of the above lottery (1) calculate the expected utility U(q) and
U(r). (2) calculate the utility of the compound lottery as

U ({p1, q, p2, r}) = p1U(q) + p2U(r)

We will call this recursive expected utility approach

Part 1

Assume that the utility of amount u(x) = x. Calculate the recursive expected utility of the lottery of
example a
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Answer By the de�nition of the recursive expected utility representation we have that

U

({
1

2
, q,

1

2
, r

})
=

1

2
U(q) +

1

2
U(r)

=
1

2

(∑
x

q(x)u(x)

)
+

1

2

(∑
x

r(x)u(x)

)

=
1

2

(
1

3
u(5) +

2

3
u(0)

)
+

1

2

(
2

3
u(4) +

1

3
u(0)

)
=

1

2

(
1

3
5

)
+

1

2

(
2

3
4

)
=

1

2

(
5

3
+

8

3

)
=

13

6

Part 2

Show that, for a recursive expected utility maximizer the compound lottery in example a is indi�erent to
receiving the lottery that gives $5 with probability 1

6 , $4 with probability 1
3 and $0 with probability 1

2

Answer The recursive expected utility of the lottery s, where s =
(
1
6 ,

1
3 ,

1
2

)
to prices (5, 4, 0), it is just the

expected utility of such a lottery

U ({s}) = U(s) =
1

6
u(5) +

1

3
u(4) +

1

2
u(0) =

5

6
+

4

3
=

13

6

Part 3

Assume (for simplicity) that the lotteries we consider are over whole dollar amounts between $0 and $10.
We say that preferences satisfy reduction of compound lotteries if, for ever compound lottery {p1, q, p2, r}

{p1, q, p2, r} is indi�erent to the lottery {s}

Where s is the lottery such that, from each x ∈ {0, 1, ...10} s(x) = p1q(x) + p2r(x) and s(x), q(x) and
r(x) are, respectively, the probability assigned to x by the lotteries s, q and r

Show that the recursive expected utility approach satis�es the reduction of compound lotteries

Answer We want to show that the recursive expected utility satis�es the reduction of compound lotteries.
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Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{p1, q, p2, r} ∼ {s} ⇔ U ({p1, q, p2, r}) = U ({s})
⇔ U ({p1, q, p2, r}) = U ({s})
⇔ p1U ({q}) + p2U ({r}) = U ({s})

⇔ p1

(∑
x

q(x)u(x)

)
+ p2

(∑
x

r(x)u(x)

)
=

(∑
x

(p1q(x) + p2r(x))u(x)

)

⇔

(∑
x

p1q(x)u(x)

)
+

(∑
x

p2r(x)u(x)

)
=

(∑
x

(p1q(x) + p2r(x))u(x)

)

⇔

(∑
x

p1q(x)u(x) + p2r(x)u(x)

)
=
∑
x

(p1q(x) + p2r(x))u(x)

⇔
∑
x

(p1q(x) + p2r(x))u(x) =
∑
x

(p1q(x) + p2r(x))u(x)

Part 4

Now consider another way of calculating the utility of a compound lottery. Let π be a cumulative probability
weighting function. (1) use π to calculate the non-expected utility Ū(q) and Ū(r) of the lotteries q and r
(i.e. using the cumulative probability weighting model) (2) calculate the non-expected utility as

U ({p1, q, p2, r}) = π(p1)Ū(q) + (1− π(p1))Ū(r)

if Ū(q) ≥ Ū(r), or
U ({p1, q, p2, r}) = π(p2)Ū(r) + (1− π(p2))Ū(q)

if Ū(r) > Ū(q)

We will call this the recursive non-expected utility approach.

Consider the recursive lottery in example (a). Show that the recursive non-expected utility approach
does not necessarily satisfy the reduction of compound lotteries (Make life simple for yourself - assume
u(x) = x and remember that you can pick numbers for the probability weighting function, as long as
π( 1

6 ) < π( 1
3 ) < π( 1

2 ) < π( 2
3 ))

Answer Consider the following subjective probabilities

π

(
1

6

)
=

1

9

π

(
1

3

)
=

1

4

π

(
1

2

)
=

1

2

π

(
2

3

)
=

5

6

Then

Ū(q) = π

(
1

3

)
u(5) + π

(
2

3

)
u(0) = 5π

(
1

3

)
=

5

3
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Ū(r) = π

(
2

3

)
u(4) + π

(
2

3

)
u(0) = 4π

(
2

3

)
=

10

3

Then since Ū(r) > Ū(q), then

U ({p1, q, p2, r}) = π

(
1

2

)
Ū(r) +

(
1− π

(
1

2

))
Ū(q)

= π

(
1

2

)
10

3
+

(
1− π

(
1

2

)
5

3

)
=

1

2

10

3
+

1

2

5

3

=
1

2

(
5

3
+

10

3

)
=

5

2

Part 5

If the probability weighting function is a power function, will the reduction of compound lotteries hold for
the recursive lottery in example (a)? (if you get stuck, try it for π(p) = p2.)

Answer Assume that Ū(r) > Ū(q)

U ({p1, q, p2, r}) = π

(
1

2

)
Ū(r) +

(
1− π

(
1

2

))
Ū(q)

= π

(
1

2

)(
4π

(
2

3

))
+

(
1− π

(
1

2

))(
5π

(
1

3

))
=

(
1

2

)α
4

(
2

3

)α
+

(
1−

(
1

2

)α)
5

(
1

3

)α
= 4

(
1

2

2

3

)α
+ 5

(
1−

(
1

2

)α)(
1

3

)α
= 4

(
1

3

)α
+ 5

(
1−

(
1

2

)α)(
1

3

)α

While U(s) is given by

U(s) = 5π

(
1

6

)
+ 4π

(
1

3

)
+ 0π

(
1

2

)
= 5

(
1

6

)α
+ 4

(
1

3

)α
4



Then these are equal to each other if and only if

(
1−

(
1

2

)α)(
1

3

)α
=

(
1

6

)α
⇔

(
1−

(
1

2

)α)(
1

3

)α
=

(
1

3

)α(
1

2

)α
⇔

(
1−

(
1

2

)α)
=

(
1

2

)α
⇔ 1−

(
1

2

)α
=

(
1

2

)α
⇔ 1

2
=

(
1

2

)α
⇔ α = 1

Question 2 (45 pts)

Consider a decision maker who is choosing over what menu they want to choose from tomorrow. These
menus can consist of subsets of three items: apples (a), bourbon (b) and (c) cigarillos . Say that the
decision maker has a utility function u such

u(a) = 1

u(b) = 2

u(c) = 3

Say that the decision maker is standard: i.e. from any menu they will choose the best object in that menu,
and so value the menu according to its best option. Let D represent preferences over menus

Part 1

Calculate the utility of the 7 possible menus that can be constructed from subsets of {a, b, c}
The power set 2{a,b,c}/∅ is:

- {a}, {b}, {c}

-{a, b}, {a, c}, {b, c}

-{a, b, c}.

Where - U({a}) = 1, U({b}) = 2, U({c}) = 3

-U({a, b}) = 2, U({a, c}) = 3, U({b, c}) = 3

-U({a, b, c}) = 3.
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Part 2

Notice that we can write the utility of a menu X as

U(X) = max
x∈X

u(x)

Verify that a preference function D that can be represented by this utility function satis�es the property
that, if X D Y , then X ∼ X ∪ Y (If you can show this for general case, at least show its true for the 7
menus you looked at in part 1)

Answer

Claim If X � Y then X ∼ X ∪ Y
Proof. The set of choices is A, the set of menus if A = 2X/∅.

Let X,Y ∈ A. If D is represented by U(X) = maxx∈Xu(x) then

X D Y ⇐⇒ U(X) ≥ U(Y )

Now this implies that x∗ = argmaxx∈Xu(x), and y∗ = argmaxy∈Y u(y) then u(x∗) ≥ u(y∗) and by
de�nition of maximum u(x∗) ≥ u(y) for all y ∈ Y .

Then Z = X ∪ Y means that z∗ = argmaxz∈Zu(z) is necessarily equivalent to x∗, u(z∗) = u(x∗).

To see this, assume this is false (i.e. u(z∗) > u(x∗)) then it has to be the case that either z∗ ∈ Y such that
u(z∗) > u(x∗) which contradicts the assumption that u(x∗) ≥ u(y∗) or z∗ ∈ X such that u(z∗) > u(x∗)
which contradicts the de�nition that u(x∗) ≥ u(x) for all x ∈ X.

We must conclude that u(x∗) = u(z∗) so that X ∼ Z ≡ X ∪ Y .

Part 3

Does D satisfy set betweenness (again, do the general case if you can, or if not, then show its true for the
7 menus in part 1)

Answer

Axiom[Set Betweenness]. If X D Y =⇒ X D X ∪ Y D Y for all X,Y ∈ A.

Claim D satisfy set betweeness.

Proof. X D Y =⇒ X ∼ X ∪ Y that means X D X ∪ Y (and X ∪ Y D X).

Also, we have that Z = X ∪ Y D Y since u(z∗) = u(x∗) ≥ u(y) for all y ∈ Y by assumption. Then we
conclude that X D X ∪ Y D Y , so the D satis�es set betweenness.

Part 4

Now consider a decision maker who does not know what sort of mood they will be in tomorrow. With a
50% chance they think that they will want to be unhealthy, in which case they will have the utility function
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u (from section 1 above). with a 50% chance they think that they will wake up wanting to be healthy, in
which case they will have the utility function v

v(a) = 3

v(b) = 2

v(c) = 1

They calculate the utility of a menu by calculating the expected utility of that menu: i.e., for a menu
containing {a, b}, there is a 50% chance that they will wake up with utility function u. In this case b is
better than a, and so they will choose b and get utility u(b). With 50% chance they will wake up with
utility function v, in which case a is better than b and, they will choose a and get utility v(a). Thus the
utility of this set is {a, b} is given by U({a, b}) = 0.5u(b) + 0.5v(a)

Calculate the utility for this decision maker of the 7 possible menus that can be constructed from {a, b, c}

Answer - U({a}) = 0.5(1) + 0.5(3);U({b}) = 0.5(2) + 0.5, (2);U({c}) = 0.5(3) + 0.5(1)

-U({a, b}) = 0.5(2) + 0.5(3);U({a, c}) = 0.5(3) + 0.5(3);U({b, c}) = 0.5(3) + 0.5(2)

-U({a, b, c}) = 0.5(3) + 0.5(3).

Part 5

Do the preferences over menus of this decision maker satisfy the condition described in (2) above?

Observe that U({a, b}) > U({c}) but U({a, b}) < U({a, b, c}) which violates condition (2) (U({a, b}) =
U({a, b, c})).

Part 6

Do they satisfy set betweenness?

Observe that U({a}) = U({b}) then U({a}) < U({a, b}) and u({b}) < U({a, b}) to that set betweenness
is violated.

Part 7

Now consider a general description of this type of preferences (sometimes called a preference for �exibility):
Let Ω be a set of alternatives, and assume that the decision maker has a set of moods M . Each mood
occurs with probability p(m), and each mood gives rise to a utility function um over the objects in Ω. For
any subset X of Ω, the utility of that subset is calculated as

U(X) =
∑
m∈M

p(m) max
x∈X

um(x)

where maxx∈X um(x) is the highest utility obtainable in X according to the utility function um

Show that a decision maker who assesses menus in this way will satisfy the following condition:

X ⊇ Y

⇒ X D Y
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Answer:

If X ⊇ Y then if y ∈ Y then y ∈ X, in particular for any m ∈M y∗ = argmaxy∈Y um(y) it follows that
y∗ ∈ X and u(x∗) = maxx∈Xum(x) ≥ u(y∗).

Now since um(x∗) ≥ um(y∗) for allm ∈M it follows that
∑
m p(m)maxx∈Xum(x) ≥

∑
m p(m)maxy∈Y um(y)

then X D Y .

Part 8

Show that they will also satisfy the following condition

X ∼ X ∪ Y
implies that, for any Z ⊂ Ω

X ∪ Z ∼ X ∪ Y ∪ Z

Answer:

Intuitively this condition is like independence that is related to linearity, however it is a special kind of
independence that works across menus with the standard representation.

If X ∼ X ∪ Y then
∑
m p(m)maxx∈Xum(x) =

∑
m p(m)maxy∈X∪Y um(y) ⇐⇒

∑
m p(m)Um(X) =∑

p(m)Um(X ∪ Y ) where Um(X) = maxx∈Xum(x) is the standard representation.

Then it is clear that Um(X ∪ Z) = Um(X ∪ Y ∪ Z) for all m ∈ M . To see this is true, assume without
loss of generality that Um(X ∪Y ∪Z) ≥ Um(X ∪Y ) (the other possible inequality is ruled out by the fact
that X ∪ Y ∪Z ⊇ X ∪ Y ) then ∃z ∈ X ∪ Y ∪Z/X ∪Z that is a z ∈ Y such that um(z) ≥ um(z) for all
z ∈ X ∪Z. But by assumption X ∼ X ∪Y there is at least one element x ∈ X such that um(x) ≥ um(y)
for all y ∈ Y , then it must be the case that ∃z ∈ X ∪ Z such that um(z) ≥ um(y) for all y ∈ Y . This is
a contradiction. Then we conclude that Um(X ∪ Z) = Um(X ∪ Y ∪ Z).

The last part of the proof just follows from the linearity of the preferences since Um(X ∪ Z) = Um(X ∪
Y ∪ Z) =⇒

∑
m p(m)Um(X ∪ Z) =

∑
m p(m)Um(X ∪ Y ∪ Z).

Then we have that X ∪ Z ∼ X ∪ Y ∪ Z.

Part 9

We sometimes describe a decision maker as sophisticated if X ∪ {x} B X if and only if x will be chosen
from the menu X ∪{x}. Will the preferences described at the start of the question satisfy this description
of sophistication?

Answer:

Yes, since U(X ∪ {x}) > U(X) ⇐⇒ u(x) > u(x∗) where x∗ = argmaxx′∈Xu(x′). This is clearly
equivalent to stating that x will be chosen from X ∪ {x} .

Part 10

Show that the preferences in section 7 will not satisfy sophistication (i.e., there is a chance that X ∪{x} B
X, but x would not be chosen from the second stage menu). Can you think of a new de�nition of sophis-
tication that would be satis�ed by these preferences?
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Answer - U({a}) = 0.5(1) + 0.5(3);U({b}) = 0.5(2) + 0.5, (2);U({c}) = 0.5(3) + 0.5(1)

-U({a, b}) = 0.5(2) + 0.5(3);U({a, c}) = 0.5(3) + 0.5(3);U({b, c}) = 0.5(3) + 0.5(2)

-U({a, b, c}) = 0.5(3) + 0.5(3).

Observe in the example (5), that:

U({a, b} ∪ {c}) = U({a, b, c}) = 3 > U({a, b}) = 2.5

But c is only chosen with probability 0.5 when the utility is u, u(c) = 3 (and not v).

In particular, c is not chosen with probability 0.5 then it is not sophisticated in the usual sense.

Now de�ne P (a|A) as the probability of choosing a from A, then sophistication in the �exibility case means
that if U(X ∪ {x}) > U(X) for U de�ned in (7) then P (x|X ∪ {x}) > 0.

Question 3 (20 pts)

Consider the following game (sometimes called the Nash Bargaining game). Two players have to share
$10. Each player makes a bid b1 and b2, which can be any number between 0 and 10. If b1 + b2 ≤ 10,
then each player receives their bid. If b1 + b2 > 10 then each player receives zero. These bids are made
simultaneously. Assume that utility is linear in money.

Part 1

Show that assuming standard preferences, a pair of strategies {b1, b2} is a Nash Equilibrium if b1+b2 = 10.
Are these the only Nash Equilibria of this game? (Remember, a Nash Equilibrium is a pair of strategies
{b1, b2} such that b1 is the best that player 1 can do, given b2, and b2 is the best that player 2 can do
given b1)

A pair of strategies {b1, b2} is a Nash Equilibrium if b1 + b2 = 10. We need to show that there is not
a pro�table deviation for any of the two players if they are playing {b1, b2} such that b1 + b2 = 10. Clearly,
none of the players has incentives to o�er a b′i < bi since given the other player's strategy they are better
o� bidding as high as possible as long as b1 + b2 ≤ 10.

It is also straightforward that, as long as bi > 0 for i = 1, 2 they are better o� by bidding {b1, b2}
such that b1 + b2 = 10 than bidding b′i > bi, since that would imply both of them getting 0, while before
ui = bi > 0. Finally even if one of the subjects is bidding 10 and the other 0, if we consider standard prefer-
ences the subject that is receiving 0 has no incentives to deviate, since it would get exactly the same payo�s.

Playing 10,10 is also a Nash equilibrium and both get zero. Any unilateral deviation won't change the
deviant payo�s and therefore no incentives to deviate from it.

Part 2

Imagine that player 1 has standard preferences, and player 2 has inequality averse preferences with α > 0.
Show that there is a threshold for b̄ such that, if b2 < b̄, then {b1, b2} such that b1 + b2 = 10 is not a Nash
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Equilibrium. Calculate b̄ as a function of α

Subject 1 has standard preferences (assuming linearity)

u1 (x1, x2) = x1

while the preference for subject 2 is given by

u2 (x1, x2) = x2 − αmax {x1 − x2, 0} − βmax {x2 − x1, 0}

Assume x1 > x2 and x1 + x2 = 10 then the utility of subject 2 collapses to

u2 (x1, x2) = x2 − α (x1 − x2)

if subject 2 rejects the o�er he gets 0, therefore we must have that if the subject accepts the split it should
be that

u2 (x1, x2) = x2 − α (x1 − x2) ≥ 0 ⇔ x2 − α (10− 2x2) ≥ 0

⇔ x2 + 2αx2 − 10α ≥ 0

⇔ x2(1 + 2α) ≥ 10α

⇔ x2 ≥
10α

1 + 2α

Then, b̄ = 10α
1+2α

Part 3

Again imagine that player 1 has standard preferences, and player 2 has inequality averse preferences. Is it
always the case that, if b2 > b̄, then {b1, b2} such that b1 + b2 = 10 is a Nash Equilibrium of the game?
What if β > 0.5?

Assume that x2 > x1 and x1 + x2 = 10, x2 > 10 − x2, that implies that x2 > 5 and x1 < 5. Then the
utility function of subject 2 collapses to

u2 (x1, x2) = x2 − β (x2 − 10− x2) = x2 − 10β

. If x1 < 5, subject 1 always can bid 5 and get an utility of 5; therefore, it must be the case that, if he is
willing to bid more is because x2 − 10β > 5, which no matter x1 it won't be possible if β > 0.5
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