Behavioral Economics

Final Exam - Suggested Solutions

Mark Dean

Friday 18th May

Question 1 (35 pts)

We are going to consider preferences over compound lotteries. These are lotteries that give other lotteries as prizes. Let $\left\{p_{1}, q, p_{2}, r\right\}$ be the lottery that with probability p_{1} gives the lottery q, and with probability p_{2} gives the lottery r. For example, consider the lottery in which I flip a coin. If it comes down heads then I roll a die, and if I roll a 1 or 2 (out of 6) I give you $\$ 5$ (otherwise nothing). If it comes down heads, I roll a die, and if I get $1,2,3$ or 4 I give you $\$ 4$ (otherwise nothing). We would write this as

$$
\begin{aligned}
& \{0.5, q, 0.5, r\} \\
q= & \frac{1}{3} \$ 5, \frac{2}{3} \$ 0 \\
r= & \frac{2}{3} \$ 4, \frac{1}{3} \$ 0
\end{aligned}
$$

Call this example a. We will also write $\{q\}$ for the situation in which the DM receives the lottery $\{q\}$ for sure. (i.e., in the above example, $\{q\}$ would be a 100% chance of getting $\frac{1}{3} \$ 5, \frac{2}{3} \$ 0$)

Here is one way of calculating the utility of the above lottery (1) calculate the expected utility $U(q)$ and $U(r)$. (2) calculate the utility of the compound lottery as

$$
U\left(\left\{p_{1}, q, p_{2}, r\right\}\right)=p_{1} U(q)+p_{2} U(r)
$$

We will call this recursive expected utility approach

Part 1

Assume that the utility of amount $u(x)=x$. Calculate the recursive expected utility of the lottery of example a

Answer By the definition of the recursive expected utility representation we have that

$$
\begin{aligned}
U\left(\left\{\frac{1}{2}, q, \frac{1}{2}, r\right\}\right) & =\frac{1}{2} U(q)+\frac{1}{2} U(r) \\
& =\frac{1}{2}\left(\sum_{x} q(x) u(x)\right)+\frac{1}{2}\left(\sum_{x} r(x) u(x)\right) \\
& =\frac{1}{2}\left(\frac{1}{3} u(5)+\frac{2}{3} u(0)\right)+\frac{1}{2}\left(\frac{2}{3} u(4)+\frac{1}{3} u(0)\right) \\
& =\frac{1}{2}\left(\frac{1}{3} 5\right)+\frac{1}{2}\left(\frac{2}{3} 4\right) \\
& =\frac{1}{2}\left(\frac{5}{3}+\frac{8}{3}\right) \\
& =\frac{13}{6}
\end{aligned}
$$

Part 2

Show that, for a recursive expected utility maximizer the compound lottery in example a is indifferent to receiving the lottery that gives $\$ 5$ with probability $\frac{1}{6}, \$ 4$ with probability $\frac{1}{3}$ and $\$ 0$ with probability $\frac{1}{2}$

Answer The recursive expected utility of the lottery s, where $s=\left(\frac{1}{6}, \frac{1}{3}, \frac{1}{2}\right)$ to prices $(5,4,0)$, it is just the expected utility of such a lottery

$$
U(\{s\})=U(s)=\frac{1}{6} u(5)+\frac{1}{3} u(4)+\frac{1}{2} u(0)=\frac{5}{6}+\frac{4}{3}=\frac{13}{6}
$$

Part 3

Assume (for simplicity) that the lotteries we consider are over whole dollar amounts between $\$ 0$ and $\$ 10$. We say that preferences satisfy reduction of compound lotteries if, for ever compound lottery $\left\{p_{1}, q, p_{2}, r\right\}$
$\left\{p_{1}, q, p_{2}, r\right\}$ is indifferent to the lottery $\{s\}$

Where s is the lottery such that, from each $x \in\{0,1, \ldots 10\} s(x)=p_{1} q(x)+p_{2} r(x)$ and $s(x), q(x)$ and $r(x)$ are, respectively, the probability assigned to x by the lotteries s, q and r

Show that the recursive expected utility approach satisfies the reduction of compound lotteries

Answer We want to show that the recursive expected utility satisfies the reduction of compound lotteries.

Let $X=\{1,2,3,4,5,6,7,8,9,10\}$

$$
\begin{aligned}
\left\{p_{1}, q, p_{2}, r\right\} \sim\{s\} & \Leftrightarrow U\left(\left\{p_{1}, q, p_{2}, r\right\}\right)=U(\{s\}) \\
& \Leftrightarrow U\left(\left\{p_{1}, q, p_{2}, r\right\}\right)=U(\{s\}) \\
& \Leftrightarrow p_{1} U(\{q\})+p_{2} U(\{r\})=U(\{s\}) \\
& \Leftrightarrow p_{1}\left(\sum_{x} q(x) u(x)\right)+p_{2}\left(\sum_{x} r(x) u(x)\right)=\left(\sum_{x}\left(p_{1} q(x)+p_{2} r(x)\right) u(x)\right) \\
& \Leftrightarrow\left(\sum_{x} p_{1} q(x) u(x)\right)+\left(\sum_{x} p_{2} r(x) u(x)\right)=\left(\sum_{x}\left(p_{1} q(x)+p_{2} r(x)\right) u(x)\right) \\
& \Leftrightarrow\left(\sum_{x} p_{1} q(x) u(x)+p_{2} r(x) u(x)\right)=\sum_{x}\left(p_{1} q(x)+p_{2} r(x)\right) u(x) \\
& \Leftrightarrow \sum_{x}\left(p_{1} q(x)+p_{2} r(x)\right) u(x)=\sum_{x}\left(p_{1} q(x)+p_{2} r(x)\right) u(x)
\end{aligned}
$$

Part 4

Now consider another way of calculating the utility of a compound lottery. Let π be a cumulative probability weighting function. (1) use π to calculate the non-expected utility $\bar{U}(q)$ and $\bar{U}(r)$ of the lotteries q and r (i.e. using the cumulative probability weighting model) (2) calculate the non-expected utility as

$$
U\left(\left\{p_{1}, q, p_{2}, r\right\}\right)=\pi\left(p_{1}\right) \bar{U}(q)+\left(1-\pi\left(p_{1}\right)\right) \bar{U}(r)
$$

if $\bar{U}(q) \geq \bar{U}(r)$, or

$$
U\left(\left\{p_{1}, q, p_{2}, r\right\}\right)=\pi\left(p_{2}\right) \bar{U}(r)+\left(1-\pi\left(p_{2}\right)\right) \bar{U}(q)
$$

if $\bar{U}(r)>\bar{U}(q)$

We will call this the recursive non-expected utility approach.

Consider the recursive lottery in example (a). Show that the recursive non-expected utility approach does not necessarily satisfy the reduction of compound lotteries (Make life simple for yourself - assume $u(x)=x$ and remember that you can pick numbers for the probability weighting function, as long as $\left.\pi\left(\frac{1}{6}\right)<\pi\left(\frac{1}{3}\right)<\pi\left(\frac{1}{2}\right)<\pi\left(\frac{2}{3}\right)\right)$

Answer Consider the following subjective probabilities

$$
\begin{aligned}
& \pi\left(\frac{1}{6}\right)=\frac{1}{9} \\
& \pi\left(\frac{1}{3}\right)=\frac{1}{4} \\
& \pi\left(\frac{1}{2}\right)=\frac{1}{2} \\
& \pi\left(\frac{2}{3}\right)=\frac{5}{6}
\end{aligned}
$$

Then

$$
\bar{U}(q)=\pi\left(\frac{1}{3}\right) u(5)+\pi\left(\frac{2}{3}\right) u(0)=5 \pi\left(\frac{1}{3}\right)=\frac{5}{3}
$$

$$
\bar{U}(r)=\pi\left(\frac{2}{3}\right) u(4)+\pi\left(\frac{2}{3}\right) u(0)=4 \pi\left(\frac{2}{3}\right)=\frac{10}{3}
$$

Then since $\bar{U}(r)>\bar{U}(q)$, then

$$
\begin{aligned}
U\left(\left\{p_{1}, q, p_{2}, r\right\}\right) & =\pi\left(\frac{1}{2}\right) \bar{U}(r)+\left(1-\pi\left(\frac{1}{2}\right)\right) \bar{U}(q) \\
& =\pi\left(\frac{1}{2}\right) \frac{10}{3}+\left(1-\pi\left(\frac{1}{2}\right) \frac{5}{3}\right) \\
& =\frac{1}{2} \frac{10}{3}+\frac{1}{2} \frac{5}{3} \\
& =\frac{1}{2}\left(\frac{5}{3}+\frac{10}{3}\right) \\
& =\frac{5}{2}
\end{aligned}
$$

Part 5

If the probability weighting function is a power function, will the reduction of compound lotteries hold for the recursive lottery in example (a)? (if you get stuck, try it for $\pi(p)=p^{2}$.)

Answer Assume that $\bar{U}(r)>\bar{U}(q)$

$$
\begin{aligned}
U\left(\left\{p_{1}, q, p_{2}, r\right\}\right) & =\pi\left(\frac{1}{2}\right) \bar{U}(r)+\left(1-\pi\left(\frac{1}{2}\right)\right) \bar{U}(q) \\
& =\pi\left(\frac{1}{2}\right)\left(4 \pi\left(\frac{2}{3}\right)\right)+\left(1-\pi\left(\frac{1}{2}\right)\right)\left(5 \pi\left(\frac{1}{3}\right)\right) \\
& =\left(\frac{1}{2}\right)^{\alpha} 4\left(\frac{2}{3}\right)^{\alpha}+\left(1-\left(\frac{1}{2}\right)^{\alpha}\right) 5\left(\frac{1}{3}\right)^{\alpha} \\
& =4\left(\frac{1}{2} \frac{2}{3}\right)^{\alpha}+5\left(1-\left(\frac{1}{2}\right)^{\alpha}\right)\left(\frac{1}{3}\right)^{\alpha} \\
& =4\left(\frac{1}{3}\right)^{\alpha}+5\left(1-\left(\frac{1}{2}\right)^{\alpha}\right)\left(\frac{1}{3}\right)^{\alpha}
\end{aligned}
$$

While $U(s)$ is given by

$$
\begin{aligned}
U(s) & =5 \pi\left(\frac{1}{6}\right)+4 \pi\left(\frac{1}{3}\right)+0 \pi\left(\frac{1}{2}\right) \\
& =5\left(\frac{1}{6}\right)^{\alpha}+4\left(\frac{1}{3}\right)^{\alpha}
\end{aligned}
$$

Then these are equal to each other if and only if

$$
\begin{aligned}
\left(1-\left(\frac{1}{2}\right)^{\alpha}\right)\left(\frac{1}{3}\right)^{\alpha}=\left(\frac{1}{6}\right)^{\alpha} & \Leftrightarrow\left(1-\left(\frac{1}{2}\right)^{\alpha}\right)\left(\frac{1}{3}\right)^{\alpha}=\left(\frac{1}{3}\right)^{\alpha}\left(\frac{1}{2}\right)^{\alpha} \\
& \Leftrightarrow\left(1-\left(\frac{1}{2}\right)^{\alpha}\right)=\left(\frac{1}{2}\right)^{\alpha} \\
& \Leftrightarrow 1-\left(\frac{1}{2}\right)^{\alpha}=\left(\frac{1}{2}\right)^{\alpha} \\
& \Leftrightarrow \frac{1}{2}=\left(\frac{1}{2}\right)^{\alpha} \\
& \Leftrightarrow \alpha=1
\end{aligned}
$$

Question 2 (45 pts)

Consider a decision maker who is choosing over what menu they want to choose from tomorrow. These menus can consist of subsets of three items: apples (a), bourbon (b) and (c) cigarillos. Say that the decision maker has a utility function u such

$$
\begin{aligned}
& u(a)=1 \\
& u(b)=2 \\
& u(c)=3
\end{aligned}
$$

Say that the decision maker is standard: i.e. from any menu they will choose the best object in that menu, and so value the menu according to its best option. Let \unrhd represent preferences over menus

Part 1

Calculate the utility of the 7 possible menus that can be constructed from subsets of $\{a, b, c\}$
The power set $2^{\{a, b, c\}} / \emptyset$ is:
$-\{a\},\{b\},\{c\}$
$-\{a, b\},\{a, c\},\{b, c\}$
$-\{a, b, c\}$.

Where $-U(\{a\})=1, U(\{b\})=2, U(\{c\})=3$
$-U(\{a, b\})=2, U(\{a, c\})=3, U(\{b, c\})=3$
$-U(\{a, b, c\})=3$.

Part 2

Notice that we can write the utility of a menu X as

$$
U(X)=\max _{x \in X} u(x)
$$

Verify that a preference function \unrhd that can be represented by this utility function satisfies the property that, if $X \unrhd Y$, then $X \sim X \cup Y$ (If you can show this for general case, at least show its true for the 7 menus you looked at in part 1)

Answer

Claim If $X \succ Y$ then $X \sim X \cup Y$
Proof. The set of choices is A, the set of menus if $\mathcal{A}=2^{X} / \emptyset$.

Let $X, Y \in \mathcal{A}$. If \unrhd is represented by $U(X)=\max _{x \in X} u(x)$ then
$X \unrhd Y \Longleftrightarrow U(X) \geq U(Y)$

Now this implies that $x^{*}=\operatorname{argmax}_{x \in X} u(x)$, and $y^{*}=\operatorname{argmax}_{y \in Y} u(y)$ then $u\left(x^{*}\right) \geq u\left(y^{*}\right)$ and by definition of maximum $u\left(x^{*}\right) \geq u(y)$ for all $y \in Y$.

Then $Z=X \cup Y$ means that $z^{*}=\operatorname{argmax}_{z \in Z} u(z)$ is necessarily equivalent to $x^{*}, u\left(z^{*}\right)=u\left(x^{*}\right)$.

To see this, assume this is false (i.e. $u\left(z^{*}\right)>u\left(x^{*}\right)$) then it has to be the case that either $z^{*} \in Y$ such that $u\left(z^{*}\right)>u\left(x^{*}\right)$ which contradicts the assumption that $u\left(x^{*}\right) \geq u\left(y^{*}\right)$ or $z^{*} \in X$ such that $u\left(z^{*}\right)>u\left(x^{*}\right)$ which contradicts the definition that $u\left(x^{*}\right) \geq u(x)$ for all $x \in X$.

We must conclude that $u\left(x^{*}\right)=u\left(z^{*}\right)$ so that $X \sim Z \equiv X \cup Y$.

Part 3

Does \unrhd satisfy set betweenness (again, do the general case if you can, or if not, then show its true for the 7 menus in part 1)
Answer

Axiom[Set Betweenness]. If $X \unrhd Y \Longrightarrow X \unrhd X \cup Y \unrhd Y$ for all $X, Y \in \mathcal{A}$.

Claim \unrhd satisfy set betweeness.

Proof. $X \unrhd Y \Longrightarrow X \sim X \cup Y$ that means $X \unrhd X \cup Y$ (and $X \cup Y \unrhd X$).

Also, we have that $Z=X \cup Y \unrhd Y$ since $u\left(z^{*}\right)=u\left(x^{*}\right) \geq u(y)$ for all $y \in Y$ by assumption. Then we conclude that $X \unrhd X \cup Y \unrhd Y$, so the \unrhd satisfies set betweenness.

Part 4

Now consider a decision maker who does not know what sort of mood they will be in tomorrow. With a 50% chance they think that they will want to be unhealthy, in which case they will have the utility function
u (from section 1 above). with a 50% chance they think that they will wake up wanting to be healthy, in which case they will have the utility function v

$$
\begin{aligned}
v(a) & =3 \\
v(b) & =2 \\
v(c) & =1
\end{aligned}
$$

They calculate the utility of a menu by calculating the expected utility of that menu: i.e., for a menu containing $\{a, b\}$, there is a 50% chance that they will wake up with utility function u. In this case b is better than a, and so they will choose b and get utility $u(b)$. With 50% chance they will wake up with utility function v, in which case a is better than b and, they will choose a and get utility $v(a)$. Thus the utility of this set is $\{a, b\}$ is given by $U(\{a, b\})=0.5 u(b)+0.5 v(a)$

Calculate the utility for this decision maker of the 7 possible menus that can be constructed from $\{a, b, c\}$
Answer $-U(\{a\})=0.5(1)+0.5(3) ; U(\{b\})=0.5(2)+0.5,(2) ; U(\{c\})=0.5(3)+0.5(1)$
$-U(\{a, b\})=0.5(2)+0.5(3) ; U(\{a, c\})=0.5(3)+0.5(3) ; U(\{b, c\})=0.5(3)+0.5(2)$
$-U(\{a, b, c\})=0.5(3)+0.5(3)$.

Part 5

Do the preferences over menus of this decision maker satisfy the condition described in (2) above?

Observe that $U(\{a, b\})>U(\{c\})$ but $U(\{a, b\})<U(\{a, b, c\})$ which violates condition $(2)(U(\{a, b\})=$ $U(\{a, b, c\}))$.

Part 6

Do they satisfy set betweenness?

Observe that $U(\{a\})=U(\{b\})$ then $U(\{a\})<U(\{a, b\})$ and $u(\{b\})<U(\{a, b\})$ to that set betweenness is violated.

Part 7

Now consider a general description of this type of preferences (sometimes called a preference for flexibility): Let Ω be a set of alternatives, and assume that the decision maker has a set of moods M. Each mood occurs with probability $p(m)$, and each mood gives rise to a utility function u_{m} over the objects in Ω. For any subset X of Ω, the utility of that subset is calculated as

$$
U(X)=\sum_{m \in M} p(m) \max _{x \in X} u_{m}(x)
$$

where $\max _{x \in X} u_{m}(x)$ is the highest utility obtainable in X according to the utility function u_{m}

Show that a decision maker who assesses menus in this way will satisfy the following condition:

$$
\begin{aligned}
X & \supseteq Y \\
& \Rightarrow X \unrhd Y
\end{aligned}
$$

Answer:

If $X \supseteq Y$ then if $y \in Y$ then $y \in X$, in particular for any $m \in M y^{*}=\operatorname{argmax}_{y \in Y} u_{m}(y)$ it follows that $y^{*} \in X$ and $u\left(x^{*}\right)=\max _{x \in X} u_{m}(x) \geq u\left(y^{*}\right)$.

Now since $u_{m}\left(x^{*}\right) \geq u_{m}\left(y^{*}\right)$ for all $m \in M$ it follows that $\sum_{m} p(m) \max _{x \in X} u_{m}(x) \geq \sum_{m} p(m) \max _{y \in Y} u_{m}(y)$ then $X \unrhd Y$.

Part 8

Show that they will also satisfy the following condition

$$
\begin{aligned}
X & \sim X \cup Y \\
\text { implies that, for any } Z & \subset \Omega \\
X \cup Z & \sim X \cup Y \cup Z
\end{aligned}
$$

Answer:

Intuitively this condition is like independence that is related to linearity, however it is a special kind of independence that works across menus with the standard representation.
If $X \sim X \cup Y$ then $\sum_{m} p(m) \max _{x \in X} u_{m}(x)=\sum_{m} p(m) \max _{y \in X \cup Y} u_{m}(y) \Longleftrightarrow \sum_{m} p(m) U_{m}(X)=$ $\sum p(m) U_{m}(X \cup Y)$ where $U_{m}(X)=\max _{x \in X} u_{m}(x)$ is the standard representation.
Then it is clear that $U_{m}(X \cup Z)=U_{m}(X \cup Y \cup Z)$ for all $m \in M$. To see this is true, assume without loss of generality that $U_{m}(X \cup Y \cup Z) \geq U_{m}(X \cup Y)$ (the other possible inequality is ruled out by the fact that $X \cup Y \cup Z \supseteq X \cup Y)$ then $\exists \bar{z} \in X \cup Y \cup Z / X \cup Z$ that is a $\bar{z} \in Y$ such that $u_{m}(\bar{z}) \geq u_{m}(z)$ for all $z \in X \cup Z$. But by assumption $X \sim X \cup Y$ there is at least one element $x \in X$ such that $u_{m}(x) \geq u_{m}(y)$ for all $y \in Y$, then it must be the case that $\exists z \in X \cup Z$ such that $u_{m}(z) \geq u_{m}(y)$ for all $y \in Y$. This is a contradiction. Then we conclude that $U_{m}(X \cup Z)=U_{m}(X \cup Y \cup Z)$.
The last part of the proof just follows from the linearity of the preferences since $U_{m}(X \cup Z)=U_{m}(X \cup$ $Y \cup Z) \Longrightarrow \sum_{m} p(m) U_{m}(X \cup Z)=\sum_{m} p(m) U_{m}(X \cup Y \cup Z)$.
Then we have that $X \cup Z \sim X \cup Y \cup Z$.

Part 9

We sometimes describe a decision maker as sophisticated if $X \cup\{x\} \triangleright X$ if and only if x will be chosen from the menu $X \cup\{x\}$. Will the preferences described at the start of the question satisfy this description of sophistication?

Answer:

Yes, since $U(X \cup\{x\})>U(X) \Longleftrightarrow u(x)>u\left(x^{*}\right)$ where $x^{*}=\operatorname{argmax}_{x^{\prime} \in X} u\left(x^{\prime}\right)$. This is clearly equivalent to stating that x will be chosen from $X \cup\{x\}$.

Part 10

Show that the preferences in section 7 will not satisfy sophistication (i.e., there is a chance that $X \cup\{x\} \triangleright$ X, but x would not be chosen from the second stage menu). Can you think of a new definition of sophistication that would be satisfied by these preferences?

Answer $-U(\{a\})=0.5(1)+0.5(3) ; U(\{b\})=0.5(2)+0.5,(2) ; U(\{c\})=0.5(3)+0.5(1)$
$-U(\{a, b\})=0.5(2)+0.5(3) ; U(\{a, c\})=0.5(3)+0.5(3) ; U(\{b, c\})=0.5(3)+0.5(2)$
$-U(\{a, b, c\})=0.5(3)+0.5(3)$.

Observe in the example (5), that:
$U(\{a, b\} \cup\{c\})=U(\{a, b, c\})=3>U(\{a, b\})=2.5$

But c is only chosen with probability 0.5 when the utility is $u, u(c)=3$ (and not v).

In particular, c is not chosen with probability 0.5 then it is not sophisticated in the usual sense.

Now define $P(a \mid A)$ as the probability of choosing a from A, then sophistication in the flexibility case means that if $U(X \cup\{x\})>U(X)$ for U defined in (7) then $P(x \mid X \cup\{x\})>0$.

Question 3 (20 pts)

Consider the following game (sometimes called the Nash Bargaining game). Two players have to share $\$ 10$. Each player makes a bid b_{1} and b_{2}, which can be any number between 0 and 10. If $b_{1}+b_{2} \leq 10$, then each player receives their bid. If $b_{1}+b_{2}>10$ then each player receives zero. These bids are made simultaneously. Assume that utility is linear in money.

Part 1

Show that assuming standard preferences, a pair of strategies $\left\{b_{1}, b_{2}\right\}$ is a Nash Equilibrium if $b_{1}+b_{2}=10$. Are these the only Nash Equilibria of this game? (Remember, a Nash Equilibrium is a pair of strategies $\left\{b_{1}, b_{2}\right\}$ such that b_{1} is the best that player 1 can do, given b_{2}, and b_{2} is the best that player 2 can do given b_{1})

A pair of strategies $\left\{b_{1}, b_{2}\right\}$ is a Nash Equilibrium if $b_{1}+b_{2}=10$. We need to show that there is not a profitable deviation for any of the two players if they are playing $\left\{b_{1}, b_{2}\right\}$ such that $b_{1}+b_{2}=10$. Clearly, none of the players has incentives to offer a $b_{i}^{\prime}<b_{i}$ since given the other player's strategy they are better off bidding as high as possible as long as $b_{1}+b_{2} \leq 10$.

It is also straightforward that, as long as $b_{i}>0$ for $i=1,2$ they are better off by bidding $\left\{b_{1}, b_{2}\right\}$ such that $b_{1}+b_{2}=10$ than bidding $b_{i}^{\prime}>b_{i}$, since that would imply both of them getting 0 , while before $u_{i}=b_{i}>0$. Finally even if one of the subjects is bidding 10 and the other 0 , if we consider standard preferences the subject that is receiving 0 has no incentives to deviate, since it would get exactly the same payoffs.

Playing 10,10 is also a Nash equilibrium and both get zero. Any unilateral deviation won't change the deviant payoffs and therefore no incentives to deviate from it.

Part 2

Imagine that player 1 has standard preferences, and player 2 has inequality averse preferences with $\alpha>0$. Show that there is a threshold for \bar{b} such that, if $b_{2}<\bar{b}$, then $\left\{b_{1}, b_{2}\right\}$ such that $b_{1}+b_{2}=10$ is not a Nash

Equilibrium. Calculate \bar{b} as a function of α
Subject 1 has standard preferences (assuming linearity)

$$
u_{1}\left(x_{1}, x_{2}\right)=x_{1}
$$

while the preference for subject 2 is given by

$$
u_{2}\left(x_{1}, x_{2}\right)=x_{2}-\alpha \max \left\{x_{1}-x_{2}, 0\right\}-\beta \max \left\{x_{2}-x_{1}, 0\right\}
$$

Assume $x_{1}>x_{2}$ and $x_{1}+x_{2}=10$ then the utility of subject 2 collapses to

$$
u_{2}\left(x_{1}, x_{2}\right)=x_{2}-\alpha\left(x_{1}-x_{2}\right)
$$

if subject 2 rejects the offer he gets 0 , therefore we must have that if the subject accepts the split it should be that

$$
\begin{aligned}
u_{2}\left(x_{1}, x_{2}\right)=x_{2}-\alpha\left(x_{1}-x_{2}\right) \geq 0 & \Leftrightarrow x_{2}-\alpha\left(10-2 x_{2}\right) \geq 0 \\
& \Leftrightarrow x_{2}+2 \alpha x_{2}-10 \alpha \geq 0 \\
& \Leftrightarrow x_{2}(1+2 \alpha) \geq 10 \alpha \\
& \Leftrightarrow x_{2} \geq \frac{10 \alpha}{1+2 \alpha}
\end{aligned}
$$

Then, $\bar{b}=\frac{10 \alpha}{1+2 \alpha}$

Part 3

Again imagine that player 1 has standard preferences, and player 2 has inequality averse preferences. Is it always the case that, if $b_{2}>\bar{b}$, then $\left\{b_{1}, b_{2}\right\}$ such that $b_{1}+b_{2}=10$ is a Nash Equilibrium of the game? What if $\beta>0.5$?

Assume that $x_{2}>x_{1}$ and $x_{1}+x_{2}=10, x_{2}>10-x_{2}$, that implies that $x_{2}>5$ and $x_{1}<5$. Then the utility function of subject 2 collapses to

$$
u_{2}\left(x_{1}, x_{2}\right)=x_{2}-\beta\left(x_{2}-10-x_{2}\right)=x_{2}-10 \beta
$$

. If $x_{1}<5$, subject 1 always can bid 5 and get an utility of 5 ; therefore, it must be the case that, if he is willing to bid more is because $x_{2}-10 \beta>5$, which no matter x_{1} it won't be possible if $\beta>0.5$

