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Probability Weighting

e Let's think back to the Allais paradox
o Prizes are $0, $16, $18

0 0.01
1 = | 0.89
0 0.1
0.89 0.90
0.11 =< 0
0 0.1

e What could be going wrong with the EU model?



Introduction

e Many alternative models have been proposed in the literature

e Disappointment: Gul, Faruk, 1991. "A Theory of
Disappointment Aversion,"

e Salience: Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer,
2012. "Salience Theory of Choice Under Risk,"

e We are going to focus on one of the most widespread and
straightforward:

e Probability weighting



Probability Weighting

e Maybe the problem that the Allais paradox highlights is that
people do not 'believe’ the probabilities that are told to them

e For example they treat a 1% probability of winning $0 as if it
is more likely than that

® ‘| am unlucky, so the bad outcome is more likely to happen to
me’

e The difference between 0% and 1% seems bigger than the
difference between 89% and 90%

e This is the idea behind the probability weighting model.



Simple Probability Weighting Model

Approach 1: Simple probability weighting
Let's start with expected utility

U(p) = Y p(x)u(x)

xeX

And allow for probability weighting

V(p) = )_ mt(p(x))u(x)
xeX
Where 7T is the probability weighting function
This can explain the Allais paradox
e For example if 77(0.01) = 0.05



Simple Probability Weighting Model

e However, the simple probability weighting model is not popular
e For two reasons

@ It leads to violations of stochastic dominance
@ It doesn't really capture the idea of ‘pessimism’



Simple Probability Weighting Model

e Violations of stochastic dominance

e Let Fp(x) be the probability of getting an outcome of x or
worse according to p
e e.g the cumulative distribution function of p

Fo(x) =Y p(y)

y<x
e We say that p (first order) stochastically dominates q if
Fp(x) < Fq(x)

for every prize x
e i.e, for any prize, the probability of getting something at least
as bad is higher under g than under p



Simple Probability Weighting Model

e E.g. for prizes x; < x» < x3

0.1 0.2
0.7 stochastically dominates 0.7
0.2 0.1

e But

0.01 0.99
0.99 does not stochastically dominates 0

0 0.01



Simple Probability Weighting Model

e A property that we would generally like a model to have is
that it obeys first order stochastic dominance

o i.e. if p first order stochastically dominates g then p > g
e This is certainly the case for the expected utility model

e It turns out that this is not the case for the simple probability
weighting model

Theorem

Unless 1t is the identity function, a decision maker who is behaving
in line with the simple probability weighting model will violate
stochastic dominance (i.e. we can find a p and a q such that p
stochastically dominates q but q >~ p)

e Proof is beyond the scope of this course



Pessimism

Think back to the Allais paradox

0 0.01
1] =1 089
0 0.1

It seems as if the 1% probability of $0 is being overweighted
Is this just because it is a 1% probability?
Or is it because it is a 1% probability of the worst prize

If it is the latter, this is something that the simple probability
weighting model cannot capture

e Weights are only based on probability



Pessimism

e Consider the following two examples

Example

Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
winning $5
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Example
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Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
losing $1000



Pessimism

e Consider the following two examples

Example
Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
winning $5

Example

Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
losing $1000

e Would you ‘weigh’ the 2% probability the same in each case?

e Arguably not

e If you were pessimistic then you might think that 2% is ‘more
likely' in the latter case than in the former

e Can't be captured by the simple probability weighting model



Rank Dependent Utility

Because of these two concerns, the simple probability
weighting model is rarely used

Instead people tend to use rank dependent utility
(sometimes also called cumulative probability weighting)

Probability weighting depends on

e The probability of a prize
e Its rank in the lottery - i.e. how many prizes are better or
worse than it

In practice this is done by applying weights cumulatively
Here comes the definition

e |t looks scary, but don't panic!



Rank Dependent Utility

Definition

A decision maker's preferences = over A(X) can be represented by
a rank dependant utility model if there exists a utility function

u: X — IR and a cumulative probability weighting function

¢ : [0,1] — [0, 1] such that ¥(0) = 0 and (1) = 1, such that the
function U : A(X) — R represents =, where U(p) is constructed
in the following way:

@ The prizes of p are ranked x1, x2, ..., Xp such that
X| > X2 > Xp
® U(p) is determined as



Rank Dependent Utility

e Let's go through an example: for prizes 10 > 5 > 0 let p be
equal to
0.1
0.7
0.2

e How do we apply RDU?



Rank Dependent Utility

Well, first note that there are three prizes, so we can rewrite
the expression above as

Ulp) = 9(p1)ulx)
+ (@ (pr+p2) — ¢ (p1)) ulx)
+ (¢ (pr+p2+p3) — ¢ (p1+p2)) u(x3)

The weight attached to the best prize is the weight of p;

The weight attached to the second best prize is the weight on
the probability of

e Getting something at least as good as the second prize

e Minus the probability of getting something better than the
second prize

e And so on

Notice that if ¢ is the identity function this is just expected
utility



Rank Dependent Utility

e In this specific case

Ulp) = ¢(p1)u(x)
+ (@ (pr+p2) =9 (p1)) u(x)
+ (P (pr+p2+p3) = (p1+p2)) u(xz)

e Becomes

U(p) = #(0.1)u(10)
+ (¥ (0.8) = (0.1)) u(5)
+ (¢ (1) —(0.8)) u(0)



Rank Dependent Utility and the Allais Paradox

e We will now show how RDU can lead to the Allais paradox.

e In order to do so, we will think of a slight modification of the
previous experiment



Rank Dependent Utility and the Allais Paradox

Question 1 What is the amount of money x that would make the
DM indifferent between
1,000, 000 for sure

and

1% chance of 0
89% chance of 1,000, 00

10% chance of x

Question 2 What is the amount of money z that would make the
DM indifferent between

11% chance of 1,000, 000 and 89% chance of 0
and

10% chance of z and 90% chance of 0



Rank Dependent Utility and the Allais Paradox

Expected utility: z = x (check that you understand why this
is the case)

Allais-type behavior: x > z
What about RDU?

For simplicity, assume u(x) = x



Rank Dependent Utility and the Allais Paradox

e What is the RDU of

1,000, 000 for sure



Rank Dependent Utility and the Allais Paradox

e What is the RDU of

1,000, 000 for sure

(1)u(1,000,000) = 1,000,000



Rank Dependent Utility and the Allais Paradox

e What is the RDU of

1% chance of 0
89% chance of 1,000, 00

10% chance of x



Rank Dependent Utility and the Allais Paradox

e What is the RDU of

1% chance of 0
89% chance of 1,000, 00

10% chance of x

(0.1)x
+ (¥(0.99) — (0.1)) 1,000, 000

+ (p(1) — (0.99)) 0
(assuming x > 1,000, 000)



Rank Dependent Utility and the Allais Paradox

e What is the RDU of

11% chance of 1,000, 000 and 89% chance of 0



Rank Dependent Utility and the Allais Paradox

e What is the RDU of

11% chance of 1,000, 000 and 89% chance of 0

1(0.11)1, 000, 000 + (1 — 1(0.11)) 0



Rank Dependent Utility and the Allais Paradox

e What is the RDU of

10% chance of z and 90% chance of 0



Rank Dependent Utility and the Allais Paradox

e What is the RDU of

10% chance of z and 90% chance of 0

$(0.10)z + (1 — 1(0.10)) 0



Rank Dependent Utility and the Allais Paradox

e So, if the first two lotteries are indifferent we have

1,000,000 =  (0.1)x
+(1(0.99) — 1(0.1)) 1,000, 000
+(9(1) —(0.99))0

e Which implies

1 ((0.99) — (0.1))
$(0.1) 1,000, 000

X =



Rank Dependent Utility and the Allais Paradox

e If the second two lotteries are indifferent we get
$(0.11)1, 000, 000 + (1 —¢(0.11)) 0
= ¢(0.1)z+(1—¢(0.1))0

_ y(011)
= = 1/)(0.1) 1,000, 000

N



Rank Dependent Utility and the Allais Paradox

e So we get Allais type effects if

1— ($(099) — $(0.1)) _ $(0.11)
p(0.1) p(0.1)

e Or
$(1) — 9(0.99) > $(0.1) — p(0.11)
e i.e. the weight of going from certainty to 99% is bigger than
the weight of going from 11% to 10%



Rank Dependent Utility and the Allais Paradox

e So we get Allais type effects if

1— ($(099) — $(0.1)) _ $(0.11)
p(0.1) p(0.1)

e Or
$(1) — 9(0.99) > $(0.1) — p(0.11)
i.e. the weight of going from certainty to 99% is bigger than
the weight of going from 11% to 10%



Rank Dependent Utility and the Allais Paradox

e Is this always going to be the case?
e To explore, let's assume a particular form for probability
weighting
P(x) = x"

e And plug in some values for m



Rank Dependent Utility and the Allais Paradox

12 — 0.99% ~ 0.020 > 0.0020 ~ 1> — 0.11°

o Allais paradox



Rank Dependent Utility and the Allais Paradox

12 — 0.99% ~ 0.020 > 0.0020 ~ 1> — 0.11°

o Allais paradox

e m = 1
11 —0.99! ~0.01 =001~ 1 —0.11!

e No Allais paradox



Rank Dependent Utility and the Allais Paradox

12 — 0.99% ~ 0.020 > 0.0020 ~ 1> — 0.11°

o Allais paradox

e m = 1
11 —0.99! ~0.01 =001~ 1 —0.11!

e No Allais paradox

e m=20.5

195 —0.99%% ~ 0.005 < 0.015 ~ 1! — 0.11!

e Opposite of Allais paradox



Rank Dependent Utility and the Allais Paradox

e Turns out we get the common consequence effect if and only
if the prob weighting function is convex

Prob
weight Opposite of
Allais

Allais

e There is a sense in which this is a ‘pessimistic’ probability
weighting function



S Shaped Probability Weighting

e Convex probability weighting functions are not particularly
popular

e Usually data is best fit by an ‘s shaped’ probability weighting
function

Prob
weight




S Shaped Probability Weighting

For example, from Prelec [1998]

P(x) = exp(=(=In(x)"))
Why?

Overweights small probability gains, as well as small
probability losses

Explains why people buy Lottery tickets

Estimates from Gonzales and Wu [1999]



S Shaped Probability Weighting

1.0

wip)




