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Probability Weighting

• Let’s think back to the Allais paradox
• Prizes are $0, $16, $18 0

1
0

 �
 0.01
0.89
0.1


•  0.89

0.11
0

 ≺
 0.90

0
0.1


• What could be going wrong with the EU model?



Introduction

• Many alternative models have been proposed in the literature
• Disappointment: Gul, Faruk, 1991. "A Theory of
Disappointment Aversion,"

• Salience: Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer,
2012. "Salience Theory of Choice Under Risk,"

• We are going to focus on one of the most widespread and
straightforward:

• Probability weighting



Probability Weighting

• Maybe the problem that the Allais paradox highlights is that
people do not ’believe’the probabilities that are told to them

• For example they treat a 1% probability of winning $0 as if it
is more likely than that

• ‘I am unlucky, so the bad outcome is more likely to happen to
me’

• The difference between 0% and 1% seems bigger than the
difference between 89% and 90%

• This is the idea behind the probability weighting model.



Simple Probability Weighting Model

• Approach 1: Simple probability weighting
• Let’s start with expected utility

U(p) = ∑
x∈X

p(x)u(x)

• And allow for probability weighting

V (p) = ∑
x∈X

π(p(x))u(x)

Where π is the probability weighting function

• This can explain the Allais paradox
• For example if π(0.01) = 0.05



Simple Probability Weighting Model

• However, the simple probability weighting model is not popular
• For two reasons

1 It leads to violations of stochastic dominance
2 It doesn’t really capture the idea of ‘pessimism’



Simple Probability Weighting Model

• Violations of stochastic dominance
• Let Fp(x) be the probability of getting an outcome of x or
worse according to p

• e.g the cumulative distribution function of p

Fp(x) = ∑
y≤x

p(y)

• We say that p (first order) stochastically dominates q if

Fp(x) ≤ Fq(x)

for every prize x
• i.e, for any prize, the probability of getting something at least
as bad is higher under q than under p



Simple Probability Weighting Model

• E.g. for prizes x1 < x2 < x3 0.1
0.7
0.2

 stochastically dominates

 0.2
0.7
0.1


• But 0.01

0.99
0

 does not stochastically dominates

 0.99
0
0.01





Simple Probability Weighting Model

• A property that we would generally like a model to have is
that it obeys first order stochastic dominance

• i.e. if p first order stochastically dominates q then p � q
• This is certainly the case for the expected utility model
• It turns out that this is not the case for the simple probability
weighting model

Theorem
Unless π is the identity function, a decision maker who is behaving
in line with the simple probability weighting model will violate
stochastic dominance (i.e. we can find a p and a q such that p
stochastically dominates q but q � p)

• Proof is beyond the scope of this course



Pessimism

• Think back to the Allais paradox 0
1
0

 �
 0.01
0.89
0.1


• It seems as if the 1% probability of $0 is being overweighted

• Is this just because it is a 1% probability?

• Or is it because it is a 1% probability of the worst prize
• If it is the latter, this is something that the simple probability
weighting model cannot capture

• Weights are only based on probability



Pessimism

• Consider the following two examples

Example
Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
winning $5

Example
Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
losing $1000

• Would you ‘weigh’the 2% probability the same in each case?

• Arguably not
• If you were pessimistic then you might think that 2% is ‘more
likely’in the latter case than in the former

• Can’t be captured by the simple probability weighting model
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Rank Dependent Utility

• Because of these two concerns, the simple probability
weighting model is rarely used

• Instead people tend to use rank dependent utility
(sometimes also called cumulative probability weighting)

• Probability weighting depends on
• The probability of a prize
• Its rank in the lottery - i.e. how many prizes are better or
worse than it

• In practice this is done by applying weights cumulatively
• Here comes the definition

• It looks scary, but don’t panic!



Rank Dependent Utility

Definition
A decision maker’s preferences � over ∆(X ) can be represented by
a rank dependant utility model if there exists a utility function
u : X → R and a cumulative probability weighting function
ψ : [0, 1]→ [0, 1] such that ψ(0) = 0 and ψ(1) = 1, such that the
function U : ∆(X )→ R represents �, where U(p) is constructed
in the following way:

1 The prizes of p are ranked x1, x2, . . . , xn such that
x1 � x2 · · · � xn

2 U(p) is determined as

U(p) = ψ(p1)u(x1) +
n

∑
i=2

(
ψ

(
i

∑
j=1
pj

)
− ψ

(
i−1
∑
k=1

pk

))
u(xi )



Rank Dependent Utility

• Let’s go through an example: for prizes 10 > 5 > 0 let p be
equal to  0.1

0.7
0.2


• How do we apply RDU?



Rank Dependent Utility

• Well, first note that there are three prizes, so we can rewrite
the expression above as

U(p) = ψ(p1)u(x1)

+ (ψ (p1 + p2)− ψ (p1)) u(x2)

+ (ψ (p1 + p2 + p3)− ψ (p1 + p2)) u(x3)

• The weight attached to the best prize is the weight of p1
• The weight attached to the second best prize is the weight on
the probability of

• Getting something at least as good as the second prize
• Minus the probability of getting something better than the
second prize

• And so on

• Notice that if ψ is the identity function this is just expected
utility



Rank Dependent Utility

• In this specific case

U(p) = ψ(p1)u(x1)

+ (ψ (p1 + p2)− ψ (p1)) u(x2)

+ (ψ (p1 + p2 + p3)− ψ (p1 + p2)) u(x3)

• Becomes

U(p) = ψ(0.1)u(10)

+ (ψ (0.8)− ψ (0.1)) u(5)

+ (ψ (1)− ψ (0.8)) u(0)



Rank Dependent Utility and the Allais Paradox

• We will now show how RDU can lead to the Allais paradox.
• In order to do so, we will think of a slight modification of the
previous experiment



Rank Dependent Utility and the Allais Paradox

Question 1 What is the amount of money x that would make the
DM indifferent between

1, 000, 000 for sure

and

1% chance of 0

89% chance of 1, 000, 00

10% chance of x

Question 2 What is the amount of money z that would make the
DM indifferent between

11% chance of 1, 000, 000 and 89% chance of 0

and

10% chance of z and 90% chance of 0



Rank Dependent Utility and the Allais Paradox

• Expected utility: z = x (check that you understand why this
is the case)

• Allais-type behavior: x > z
• What about RDU?
• For simplicity, assume u(x) = x



Rank Dependent Utility and the Allais Paradox

• What is the RDU of

1, 000, 000 for sure

ψ(1)u(1, 000, 000) = 1, 000, 000



Rank Dependent Utility and the Allais Paradox

• What is the RDU of

1, 000, 000 for sure

ψ(1)u(1, 000, 000) = 1, 000, 000



Rank Dependent Utility and the Allais Paradox

• What is the RDU of

1% chance of 0

89% chance of 1, 000, 00

10% chance of x

ψ(0.1)x

+ (ψ(0.99)− ψ(0.1)) 1, 000, 000

+ (ψ(1)− ψ(0.99)) 0

(assuming x > 1, 000, 000)



Rank Dependent Utility and the Allais Paradox

• What is the RDU of

1% chance of 0

89% chance of 1, 000, 00

10% chance of x

ψ(0.1)x
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Rank Dependent Utility and the Allais Paradox

• What is the RDU of

11% chance of 1, 000, 000 and 89% chance of 0

ψ(0.11)1, 000, 000+ (1− ψ(0.11)) 0



Rank Dependent Utility and the Allais Paradox

• What is the RDU of

11% chance of 1, 000, 000 and 89% chance of 0

ψ(0.11)1, 000, 000+ (1− ψ(0.11)) 0



Rank Dependent Utility and the Allais Paradox

• What is the RDU of

10% chance of z and 90% chance of 0

ψ(0.10)z + (1− ψ(0.10)) 0



Rank Dependent Utility and the Allais Paradox

• What is the RDU of

10% chance of z and 90% chance of 0

ψ(0.10)z + (1− ψ(0.10)) 0



Rank Dependent Utility and the Allais Paradox

• So, if the first two lotteries are indifferent we have

1, 000, 000 = ψ(0.1)x

+ (ψ(0.99)− ψ(0.1)) 1, 000, 000

+ (ψ(1)− ψ(0.99)) 0

• Which implies

x =
1− (ψ(0.99)− ψ(0.1))

ψ(0.1)
1, 000, 000



Rank Dependent Utility and the Allais Paradox

• If the second two lotteries are indifferent we get

ψ(0.11)1, 000, 000+ (1− ψ(0.11)) 0

= ψ(0.1)z + (1− ψ(0.1)) 0

⇒ z =
ψ(0.11)
ψ(0.1)

1, 000, 000



Rank Dependent Utility and the Allais Paradox

• So we get Allais type effects if

1− (ψ(0.99)− ψ(0.1))
ψ(0.1)

>
ψ(0.11)
ψ(0.1)

• Or
ψ(1)− ψ(0.99) > ψ(0.1)− ψ(0.11)

• i.e. the weight of going from certainty to 99% is bigger than
the weight of going from 11% to 10%
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Rank Dependent Utility and the Allais Paradox

• Is this always going to be the case?
• To explore, let’s assume a particular form for probability
weighting

ψ(x) = xm

• And plug in some values for m



Rank Dependent Utility and the Allais Paradox

• m = 2

12 − 0.992 ≈ 0.020 > 0.0020 ≈ 12 − 0.112

• Allais paradox

• m = 1
11 − 0.991 ≈ 0.01 = 0.01 ≈ 11 − 0.111

• No Allais paradox

• m = 0.5

10.5 − 0.990.5 ≈ 0.005 < 0.015 ≈ 11 − 0.111

• Opposite of Allais paradox
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Rank Dependent Utility and the Allais Paradox

• Turns out we get the common consequence effect if and only
if the prob weighting function is convex

• There is a sense in which this is a ‘pessimistic’probability
weighting function



S Shaped Probability Weighting

• Convex probability weighting functions are not particularly
popular

• Usually data is best fit by an ‘s shaped’probability weighting
function



S Shaped Probability Weighting

• For example, from Prelec [1998]

ψ(x) = exp(−(− ln(x)α))

• Why?
• Overweights small probability gains, as well as small
probability losses

• Explains why people buy Lottery tickets
• Estimates from Gonzales and Wu [1999]



S Shaped Probability Weighting


