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1 Introduction

Last lecture we introduced the Allais Paradox and showed that it was incommensurate with the

expected utility model of choice under risk. It seems that if our aim is for a descriptive model of risky

choice, we are going to need to adapt this model in some way. Many interesting adaptations have

been proposed, for example involving the concept of disappointment1 or salience2. In this lecture we

are going to consider the most widespread and straightforward modification: Probability weighting.

1.1 Probability Weighting

Let’s think back to the Allais Paradox. As a reminder, the standard version of this paradox is

stated as

• Lottery 1: 100% chance of $16

• Lottery 2: 10% chance of $18 , 89% chance of $16 1% chance of $0

The second choice is between

• Lottery 1: 10% chance of $18, 90% chance of $0

1Gul, Faruk, 1991. "A Theory of Disappointment Aversion," Econometrica, Econometric Society, vol. 59(3),

pages 667-86, May.
2Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2012. "Salience Theory of Choice Under Risk," The

Quarterly Journal of Economics, Oxford University Press, vol. 127(3), pages 1243-1285.
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• Lottery 2: 11% chance of $16, 89% chance of $0

with people generally choosing 1 and 1.

One natural way of interpreting the paradox is that somehow people do not ‘believe’ the stated

probabilities, or at least, when making decisions they ‘weigh’ probabilities in a manner that is

not quite proportional. For example, many people, when explaining why the exhibit Allais-like

behavior, suggest that they really do not like the 1% chance of winning nothing in lottery 2: this

1% probability weighs heavily in their decisions. In particular, the difference between a 0% chance

of getting $0 (in lottery 1) and a 1% chance of getting $0 (in 2) seems more meaningful that the

difference between an 89% chance of getting $0 (in 2) and a 90% chance of getting 0 in 1. This

violates the assumption that people’s preferences are linear in probabilities, which is at the heart

of the expected utility paradigm.

One way of modeling this type of behavior is to allow for a probability weighting function which

modifies the weights that different probabilities have. Remember, expected utility requires that

there exists a  :  → R such that the function

() =
X
∈

()()

represents preferences º on ∆(). If we allow for a probability weighting function, we would

require another function  : [0 1]→ [0 1] such that

 () =
X
∈

(())()

represents º  is the probability weighting function. It takes the true objective probabilities

and warps them into what are sometimes called decision weights For example, we could think of a

probability weighting function that increases the weight on very low probabilities (so, for example

(001) = 005), thus explaining the Allais paradox. If we like, we could demand that these decision

weights sum to one and are non negative, and so act like probabilities, but it doesn’t really matter.

We will call this the ‘simple probability weighting model’.

The simple probability weighting model is clearly a generalization of the expected utility model.3

It should also be obvious that we could pick decision weights that allow for the Allais paradox.

3 i.e. it allows for everything that the expected utility model allows for (just set () =  for all ), and more

besides.
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So does this make it the right generalization of expected utility? The considered answer of the

profession is ‘probably not’, for two reasons

1. It turns out, that if  is anything other than the identity function, then the simple proba-

bility weighting model implies violations of stochastic dominance (assuming preferences are

continuous) . By this we mean the following: take two lotteries over monetary outcomes 

and , and let  and  be the cumulative distribution functions of  and .4 We say that

 stochastically dominates  if, for every ,

() ≤ ()

i.e., for any  the probability of getting a prize greater than  is higher under  than under

. If a decision maker can be represented by a simple probability weighting model with a

probability weighting function that is not equal to the identity function, then we can find a 

and  such that  stochastically dominates , but  is preferred to . Unfortunately, the proof

is beyond the scope of this course, so you will have to take it on trust, but this is usually

taken as a fairly damning criticism of the simple probability weighting model

2. It is not clear that the simple probability weighting model captures quite the decision pro-

cedure that we want. One way to think of subjects that fall for the Allais paradox is that

they are ‘pessimistic’: while the objective probability of getting $0 in 2 is only 1%, they act

as if this probability is larger - in other words they act like they are going to be unlucky.

But this implicitly assumes that the 1% probability is upweighted because it is applied to

the worst prize. Consider the following thought experiment: First, a decision maker is asked

to evaluate a lottery which had a 49% chance of winning $10, a 49% chance of winning $0

and a 2% chance of winning $5. Second, the decision maker is asked to evaluate a lottery

which had a 49% chance of winning $10, a 49% chance of winning $0 and a 2% chance of

losing $100. Would our agent weigh the 2% chance the same way in both cases? Arguably

not. If our decision maker really is pessimistic, then we might expect them to overweight

the 2% probability only in the second case. But this is not allowed in the simple probability

weighting model described above. 2% is just 2%, and so must always be overweighted or

always be underweighted.

4 i.e. for any  ∈ R, () is the probability of getting an outcome less than  according to lottery .
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Because of these two criticisms, the simple probability weighting model is not often used in

economics. Instead, people tend to use what we will call the ‘cumulative probability weighting

model’. This mechanism was introduced by Quiggin [1985], in which it is called the ‘Rank Depen-

dent Utility’ model. However, it is also at the heart of the more recent versions of prospect theory,

called ‘cumulative prospect theory’.

The basic idea of the cumulative probability weighting model is that the probability weighting

attached to a particular prize should depend on whether it is a good or bad prize, or in other

words on its rank. So in the above thought experiment, the weight of the 2% probability depends

on whether it is a good or a bad prize. How is this done in practice? Well, the weight applied

to a probability is related to that rank of the prize to which the probability is related (hence

rank dependent utility). To get at this, we apply the weights to the cumulative probability of the

distribution (hence cumulative prospect theory).

For simplicity, we will describe the model for a prize space  that has an obvious ranking (for

example  is monetary prizes). Thus we know what it means to rank the prizes in a lottery. In

fact, it is easy to extend the model to cases where we do not know what this ranking is (we can just

extract it by looking at preferences over degenerate lotteries) but we don’t need to do this now.

Definition 1 A decision maker’s preferences º over ∆() can be represented by a cumulative

probability weighting model if there exists a utility function  :  → R and a cumulative probability

weighting function  : [0 1] → [0 1] such that (0) = 0 and (1) = 1, such that the function

 : ∆()→ R represents º, where () is constructed in the following way:

1. The prizes of  (i.e.  ∈ supp()) are ranked 1 2      such that 1 Â 2 · · · Â 

2. () is determined as

() = (1)(1) +

X
=2

⎛⎝

⎛⎝ X
=1



⎞⎠− 

Ã
−1X
=1



!⎞⎠()

Upon first reading, this can look pretty formidable, but it is fairly intuitive. The utility of

lottery  is just a weighted average of the utility of its prizes. However, the weights applied to each

prize depend on it’s ranking compared to the other prizes that  can give. In each case, the weight

of the prize is equal to the weighting of the probability of all prizes at least as good as that prize,
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minus the weighting of all prizes that are better than that prize. Thus, the weight applied to the

best prize (received with probability 1) is

(1)− 0

as 1 is the probability of getting a prize at least as good as 1 and 0 is the probability of getting

a prize better than 1

The weight attached to prize 2 (received with probability 2) is given by

 (1 + 2)− (1)

as 1 + 2 is the probability of getting a prize at least as good as 2 and 1 is the probability of

getting a prize better than 2.

The weight attached to prize 3 is given by

(1 + 2 + 3)−  (1 + 2)

and so on.

Is should be obvious, but you should convince yourself that if  is the identity function, then

this reduces to expected utility.

An example will help to clarify the procedure, and show how this model can explain the Allais

paradox. Let us assume that a subject has a utility function for money () = , and has a

cumulative probability weighting function (()) = (). Would this make the decision maker

exhibit Allais-type behavior? In order to avoid calibration issues, we will ask: what value of 

would make

̄1 = 1× 1 000 000

indifferent to the lottery

̄2 = 001× 0 + 089× 1 000 000 + 01× 

and the  that would make

̄2 = 089× 0 + 011× 1 000 000
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indifferent to

1 = 090× 0 + 010× 

Allais - type behavior is indicated by   

In order to figure this out, note that

• (̄1) = (1)(1 000 000) = 1 000 000

• For lottery ̄2

(̄2) = (01)

+((099)− (01)) 1 000 000

+ ((1)− (099)) 0

(assuming   1 000 000)

• For lottery ̄2
(̄2) = (011)1 000 000 + (1− (011)) 0

• and for lottery ̄1
(̄1) = (010) + (1− (010)) 0

Thus, if (̄1) = (̄2) it must be that

1 000 000

= (01)

+((099)− (01)) 1 000 000

implying

 =
1− ((099)− (01))

(01)
1 000 000

⇒ 1− (099 − 01)
01

1 000 000
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Similarly, if (̄1) = (̄2) we have

(011)1 000 000 + (1− (011)) 0 = (010) + (1− (010)) 0

⇒  =
(011)

(010)
1 000 000

=
011

010
1 000 000

So, for Allais type behavior, we require that

011

010


1− (099 − 01)
01

⇒ 099 − 01  1 − 011

In order to get some idea when this might be, let’s try a couple of different values for . First,

for  = 2 we have

099 − 01 ≈ 097

while

1 − 011 ≈ 099

So we do get the Allais effect. For  = 1

099 − 01 = 089

and

1 − 011 = 089

So independence holds (as we would expect).

For  = 05 we have

099 − 01 ≈ 068

while

1 − 011 ≈ 067

So we get the opposite of the Allais effect.

This shows us that the cumulative probability weighting model is consistent with both the

Allais paradox and it’s opposite, depending on the shape of the weighting function. So what type

of cumulative probability weighting functions are consistent with the common consequence effect
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(i.e. the Allais paradox)? The clue is in the example above. While we will not prove it, it can be

shown that a probability weighting function implies a generalized form of the common consequence

at all probabilities if and only if it is convex. Such weighting functions are also thought of as

‘pessimistic’, as they put more weight on low-probability outcomes.

However, weighting functions that are concave everywhere are not popular for other reasons.

For one thing, convexity does not necessarily guarantee the common ratio effect (as you will see for

homework). In fact, you can have concave probability weighting functions that give the opposite

of the common ratio effect. For another, in order to generate the ‘four fold pattern of risk’ that we

described previously, the probability weighting function needs intersect the diagonal from above.5

For these reasons, the probability weighting function is usually assumed to be ‘S’ shaped - initially

concave, then convex - so small probabilities of winning are overweighted, while large probabilities

are underweighted. S shaped functions also embody the principle of diminishing sensitivity: a

change in probability of 0.1 has a bigger impact when it changes the probability of winning from 0

to 0.1 or 0.9 to 1 than when it changes it from 0.6 to 0.7.

Prelec [1998] comes up with a set of axioms that guarantee that the weighting function has the

following parametric form:

() = exp(−(− ln()))

which is often used in practical applications, as it requires the estimation of a single parameter.

5 risk-seeking over low-probability gains, risk-averse over high-probability gains, risk-averse over low-probability

losses, and risk-seeking over high-probability losses.

8


