### Overconfidence

Econ 1820: Behavioral Economics

Mark Dean

Spring 2015

### **Incorrect Beliefs**

- In objective EU we assumed that everyone agreed on what the probabilities of different events were
- In subjective expected utility theory we asked only that the DM behaved consistent with some beliefs
- There is a third possibility: We know what the DM's beliefs should be, but they make 'mistakes'
- E.g. There are many robust examples of people being bad at statistical reasoning
  - Base rate neglect
  - Hot hands fallacy
- Gamblers fallacy
- In this lecture we are going to concentrate on a different form of `incorrect beliefs'
  - Overconfidence

### Outline

- Examples of overconfidence
  - Overprecision
  - Overplacement
  - Overestimation
- Possible causes of overconfidence
- Economic consequences of overconfidence
  - Excess Entry
  - Three Tier Tariffs

Types of Overconfidence

- Overprecision
- Overplacement
- Overestimation

4

# Types of Overconfidence

- Overprecision
- Overplacement
- Overestimation

Overprecision

- The belief that you have more precise information about something that you actually do
- · How long is the Nile in miles?
  - Provide a number x so that you are 90% sure that the Nile is LONGER than x
  - $-\,$  Provide a number y so that you are 90% sure that the Nile is SHORTER than y
- Calculate the HIT rate (across population or across questions)
- Probability that correct answer is between x and y
- We would expect that the HIT rate should be 80%
- Generally the HIT rate is below 80%
  - In Soll and Klayman[2003] HIT rate 39%-66%
  - In your data HIT rate 62% (Nile) 71% (Telegraph)

# Types of Overconfidence

- Overprecision
- Overplacement
- Overestimation

# Overplacement

- The belief that you have a higher ranking that you actually do  $% \left\{ \left( 1\right) \right\} =\left\{ \left($ 

  - 37% of one firm's professional engineers placed themselves among the top 5% of performers at the firm (Zenger, 1992)
     93% of a sample of American drivers and 69% of a sample of Swedish drivers reported that they were more skillful than the median driver in their own country (Svenson, 1981)
- Also apparent in test scores
- Dean and Ortoleva [2014] asked subject's 17 Raven's Matrix questions
  - Prediction for own score: 12
- Prediction for average score: 11 (p=0.001)
- Your data
  - Prediction for own score: 5.8
  - Prediction for average score: 6.0

# Types of Overconfidence

- Overprecision
- Overplacement
- Overestimation

## Overestimation

- The belief that you are better at something than you are
  - Estimated vs Actual Grades [Kennedy et al. 2002]



### Overestimation

- The belief that you are better at something than you are
  - Estimated vs Actual Grades [Kennedy et al. 2002]



- Your results:
  - Predicted 5.8 Actual 8.0

### Causes of Overconfidence

- · Two classes of model
- 1. Due to uncertainty about ability
  - possibly coupled with mistakes in information processing
- 2. Due to deliberate biases to protect our ego
  - Do not recall events that make us look bad
  - Misinterpret signals telling us that we are rubbish
- Evidence that both effects may be important

# Overconfidence due to Information Processing

- Example: Moore and Healy [2008]
- Imagine that you are taking a quiz
- You think your performance depends on
  - S how hard the test was
  - L<sub>i</sub> how good you are
  - Performance X<sub>i</sub> =S+L<sub>i</sub>
- Before seeing the test, you think
  - S is distributed normally with mean m and variance v<sub>s</sub>
  - L<sub>i</sub> is distributed normally with mean 0 and variance v<sub>i</sub>
- After taking the test, but before learning the score, receive signal Y<sub>i</sub> = X<sub>i</sub> + E<sub>i</sub> of how well you did
  - E<sub>i</sub> mean zero error term with variance v<sub>F</sub>

#### Overestimation

- What are beliefs about your own score after receiving signal Y,?
- By Bayes rule: weighted average of signal and prior

$$E(X_i \mid Y_i) = \alpha m + (1 - \alpha)Y_i$$

Where

$$\alpha = \frac{v_L + v_E}{v_L + v_E + v_S}$$

• If Y<sub>i</sub> is unbiased, then in expectation

$$E(X_i \mid Y_i) = \alpha m + (1 - \alpha)X_i$$

- Prediction
  - Overestimation for hard tests
  - Underestimation for easy tests

# Overplacement

- What are beliefs about someone else's score after being told you scored X<sub>i</sub>?
- By Bayes rule, expectation of the difficulty of the test

$$E(S \mid X_i) = \beta m + (1 - \beta)X_i$$

Where

$$\beta = \frac{v_L}{v_L + v_S}$$

• Because S is the expectation of others score

$$E(X_i \mid X_i) = \beta m + (1 - \beta)X_i$$

- Belief about other's scores is between the mean and own score
- Prediction
  - Overplacement for easy tests
  - Underplacement for hard tests

# Overconfidence due to Information Processing: Predictions

- On average, across all tests, no overprediction or overestimation.
- In a *particular test*, depends on the difficulty:
  - Hard test: Overprediction, Underplacement
  - Easy test: Underprediction, Overplacement



# Overconfidence due to Information Processing: Predictions

- There are studies that do find both overconfidence and underconfidence
  - e.g. Stankov and Crawford [1997]
- And over and underplacement
  - Kruger [1999]
- Is this related to task difficulty?

Moore and Healy - Results

Participants' overestimation of their own performances, measured at the interim phase, over the six trial blocks for the three different quiz difficulties. (Standard deviations in parentheses.)

|        | 1               | 2               | 3               | 4               | 5               | 6               | Overall         |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Easy   | -0.40<br>(1.07) | -0.20<br>(0.79) | -0.29<br>(0.83) | -0.10<br>(0.78) | -0.10<br>(0.82) | -0.22<br>(1.20) | -0.22<br>(0.93) |
| Medium | -0.13<br>(1.65) | 0.01<br>(1.14)  | 0.05<br>(1.25)  | -0.05<br>(1.16) | -0.15<br>(1.33) | 0.31<br>(0.94)  | 0.01<br>(1.27)  |
| Hard   | 1.15<br>(1.63)  | 0.69<br>(1.62)  | 0.87<br>(1.61)  | 0.71<br>(1.22)  | 0.69 (1.37)     | 0.63<br>(1.49)  | 0.79<br>(1.50)  |

### Moore and Healy - Results

Participants' overplacement of their own performances, measured at the interim phase, over the six trial blocks for the three different quiz difficulties. (Standard deviations in parentheses.)

|        | Block Number |        |        |        |        |        |         |  |
|--------|--------------|--------|--------|--------|--------|--------|---------|--|
|        | 1            | 2      | 3      | 4      | 5      | 6      | Overall |  |
| Easy   | 0.56         | 0.55   | 0.08   | 0.59   | 0.75   | 0.36   | 0.48    |  |
|        | (2.70)       | (2.45) | (2.84) | (2.13) | (2.44) | (2.89) | (2.59)  |  |
| Medium | -0.25        | -0.23  | -0.10  | 0.41   | 0.22   | 0.15   | 0.04    |  |
|        | (3.82)       | (4.14) | (4.03) | (3.46) | (3.99) | (4.10) | (3.91)  |  |
| Hard   | -1.46        | -1.47  | -1.52  | -1.19  | -1.10  | -1.39  | -1.36   |  |
|        | (2.54)       | (2.45) | (2.51) | (2.19) | (2.17) | (2.51) | (2.39)  |  |

Other Examples of 'Rational' Overconfidence:

 It may be rational for more than 50% of people to say that they are better than average!

20

# Other Examples of 'Rational' Overconfidence:

- Benoit and Dubra [2011]
- 3 possible driver skill levels (equally likely):
  - High (prob of accident 1/20)
  - Medium (prob of accident 9/16)
  - Low (prob of accident 47/80)
- Driver does not know skill level, only whether or not they crashed
- · Overall 40% of drivers crash
- What is the belief of those that do not crash
  - P(high|no crash)= 19/36
  - P(med|no crash)=35/144
  - P(low|no crash)=11/48
- So for 60% of the drivers
- Most likely outcome is they are better than average
- $\,-\,$  More than 50% chance they are better than average

### Is All Overconfidence Rational?

- Burks et al [2013] study whether the Beniot and Dubra explanation works in a large sample
- They show that the Bayesian model implies that for any stated quantile k, the modal share must be from quantile k
  - i.e. looking at people who say they are in the middle 20%, most must be in the middle 20%

22

### Is All Overconfidence Rational?

|                |       | N      | umeracy tes | it.   |       |       | IQ test |       |       |       |
|----------------|-------|--------|-------------|-------|-------|-------|---------|-------|-------|-------|
|                | $s_1$ | 52     | 83          | 54    | 35    | $s_1$ | 82      | 83    | 54    | 85    |
| ls.            | 0.0   | 0.0    | 0.1         | 0.27  | 0.62  | 0.004 | 0.016   | 0.121 | 0.271 | 0.579 |
| t <sub>4</sub> | 0.004 | 0.009  | 0.091       | 0.298 | 0.59  | 0.0   | 0.014   | 0.168 | 0.355 | 0.461 |
| 5              | 0.0   | 0.0125 | 0.181       | 0.362 | 0.443 | 0.006 | 0.031   | 0.262 | 0.375 | 0.325 |
| f2             | 0.004 | 0.0    | 0.272       | 0.377 | 0.345 | 0.0   | 0.04    | 0.39  | 0.363 | 0.204 |
|                | 0.02  | 0.02   | 0.401       | 0.376 | 0.175 | 0.033 | 0.11    | 0.42  | 0.322 | 0.104 |

- Also, overconfidence related to personality factors
  - Below median in social dominance: 33% think they are in the top 20%
  - Above median: 55% think they are in the top 20%
  - In both cases, 20% are in the top 20%

22

### Is All Overconfidence Rational?

- Mobius et al [2013] study how people respond to signals about how they have done in a test
- All subjects take the test
- Elicit beliefs about the probability they are in the top half of performers
  - Elicit p such that they are indifferent between a p probability of winning \$10 and winning \$10 if they are in the top half of performers
- Provide 4 signals about whether they are in the top half of performers that are 75% accurate
  - i.e. if you are in the top half of performers, get a signal that says that you are in the top half 75% of the time and that you are in the bottom half 25% of the time
- · Elicit beliefs after each signal

### Is All Overconfidence Rational?

 Key finding: subjects respond differently to positive and negative news



• Those that receive 2 positive and 2 negative signals increase their beliefs by 4.8% on average

### **Effects of Overconfidence**

- Entry into a market
- Pricing of contracts

26

### **Effects of Overconfidence**

- Entry into a market
- Pricing of contracts

,

### **Excess Entry**

- Many new businesses fail
  - Between 1963 and 1982 62% of new manufacturing businesses closed within 5 years and 80% within 10 years
- Has lead people to ask if there is 'excess entry'
  - Too many new firms joining the market
- Overconfidence could lead to excess entry
  - Overestimation
  - Overplacement
- Camerer and Lovallo [1999] examine this in an experimental setting

Experiment

- Everyone receives \$10
- Players can choose to stay out of the market (and earn 0)
- If they enter the market, their earnings will depend on the number of other entrants, their 'rank' and market capacity

|      | Payoff for successful entrants<br>as a function of "c" |    |    |    |  |  |  |
|------|--------------------------------------------------------|----|----|----|--|--|--|
| Rank | 2                                                      | 4  | 6  | 8  |  |  |  |
| 1    | 33                                                     | 20 | 14 | 11 |  |  |  |
| 2    | 17                                                     | 15 | 12 | 10 |  |  |  |
| 3    |                                                        | 10 | 10 | 8  |  |  |  |
| 4    |                                                        | 5  | 7  | 7  |  |  |  |
| 5    |                                                        |    | 5  | 6  |  |  |  |
| 6    |                                                        |    | 2  | 4  |  |  |  |
| 7    |                                                        |    |    | 3  |  |  |  |
| 8    |                                                        |    |    | 2  |  |  |  |

Experiment

- Rank determined either by chance or by skill
  - Each subject played 12 round of each condition
- Rank not determined until after the entry game
- Two subject pools
  - Standard recruitment
  - Subjects told ability at trivia could improve earnings

# Results TABLE 5—AVERAGE DIFFERENCE IN EXPECTED PROFITS PER ENTRANT BETWEEN RANDOM AND SKILL CONDITIONS 12/15 12/14 52/111 Much more entry in the `skill' treatment that in the random

- Expected profit \$1.31 higher in the random treatment (p<0.0001)
- Evidence of reference group neglect
  - Difference in industry profits \$27.10 in the 'selected' group (experiments 5-8)
  - \$9.18 in 'non-selected' group (experiments 1-4)

### Effects of Overconfidence

- Entry into a market
- Pricing of contracts

# **Selling to Overconfident Consumers** [Grubb 2009]

- Imagine you are a Verizon
  - Fixed cost per consumer of \$50
  - Variable cost 5c per minute
- Consumer values minutes at 45c per minute up to a satiation point, 0c after
- Period 1: sign contract
- Period 2: use minutes
- Satiation point unknown at time of contract signing
  - 1/3 100 mins
  - 1/3 400 mins
  - 1/3 700 mins

### **Optimal Contract for a Rational** Consumer

- Assume that you are a monopoly
- 2 part tariff
  - Marginal cost pricing (5c per minute)
  - Extract all the surplus using up front fee
- Expected value of 5c per minute is \$160
  - 1/3 40c x 100+
  - 1/3 40c x 400+
  - 1/3 40c x 700
- Charge \$160 up front fee

# Optimal Contract for an Overconfident Consumer

- In real life we often see 3 part tariffs
  - Fixed fee up front
  - Low costs up to a certain point
  - High costs after that point
- Can 3 part tariffs be explained by overconfident consumers?

• Consider a consumer who believes with probability 1 that their future demand with be

Optimal Contract for an Overconfident

Consumer

400 • An example of overprecision

- Optimal contract
  - Charge Oc for the first 400 minutes
  - 45c thereafter
  - Extract all surplus with an up front fee
- 3 part tarrif!

# Optimal Contract for an Overconfident Consumer

- Why is this optimal?
- Consider minutes 100-400
  - Reducing the price from 5c to 0 costs the firm \$15 if consumer has satiation levels 400 or 700

    \$10 in expectation

  - Value to the consumer is \$15 because they assume that they will always use these minutes
  - Can increase up front charge by \$15 at the cost of \$10
- Consider minutes 400-700
  - Increasing price from 5c to 45c is \$120 if consumer has satiation level 700
  - \$40 in expectation
  - Cost to the consumer is 0 because they assume they will never use these minutes
- Can charge \$180 up front

## Summary

- Psychologists/Economists have identified (at least) 3 different types of overconfidence
  - OverprecisionOverplacementOverespectation
- Further research has shown these effect to be more nuanced
- Evidence of under confidence
- Some effects can be the result of rational signal processing under uncertainty
- Evidence of overconfidence bias remains
- E.g. asymmetric responses to good and bad information
- These biases have potentially important economic consequences
  - Excess Entry
  - Pricing strategies of firms