Bounded Rationality Lecture 2

Mark Dean

Princeton University - Behavioral Economics

The Story So Far.....

- Last week we introduced on model of costly information search/attention: Satisficing
- Examined optimal behavior with search costs
- Assumed a particular form of information search
 - Sequential Search
- Seems unnecessarily restrictive

Rational Inattention

- People choose information to acquire to maximize utility net of information costs
- People free to choose
 - How much information to acquire
 - What type of information to acquire
- Has been used to examine
 - Consumption and Savings behavior e.g: Sims 2006
 - Price Setting e.g. Matejka 2010, Martin 2012
 - Portfolio Choice Modria 2010

The Plan for Today

- A canonical model of rational inattention
- Implications of the canonical model

Set Up

- · Objective states of the world
 - e.g. Demand could be 'good', 'medium' or 'bad'
- Decision maker chooses an action
 - Set price to be high, medium or low
- Gross payoff depends on act and state
 - Quantity sold depends on price and demand

Formal set up

- $\Omega = \{\omega_1, \omega_M\}$: Objective States
- $\Delta(\Omega)$: Probability distributions over Ω
- X : Finite set of outcomes
- $U: X \to \mathbb{R}$: (Expected) utility function over outcomes
- $f:\Omega \to X$: Act, with F the set of all acts and $\mathcal F$ non-empty subsets of F
- $\{\beta, A\}$: Decision problem: $\beta \in \Delta(\Omega)$, $A \in \mathcal{F}$

Attention Strategy and Costs

• A strategy consists of a set of subjective states

$$\left\{t^{1},....t^{N}\right\} = T(\lambda) \in \Delta(\Omega)^{N}$$

 and conditional probabilities linking objective and subjective states

$$\lambda: \Omega \times \mathcal{T}(\lambda) \rightarrow [0,1]$$

 $\lambda_m(t^n)$ is the probability of subjective state t^n conditional on objective state ω_m

Which obey Bayes law

$$t_m^n = \frac{\beta_m \lambda_m(t^n)}{\sum_{k=1}^M \beta_k \lambda_k(t^n)}$$

Optimization Problem

- For a decision problem $\{\beta.A\}$ decision maker must chose
 - An attention strategy $\lambda \in \Lambda(\beta)$
 - A choice function for acts $C: T(\lambda) \to A$
- In order to maximize

Expected utility from acts - cost of information

$$\sum_{m=1}^{M} \beta_{m} \sum_{t \in T(\lambda)} \lambda_{m}(t) U(C_{t}(\omega_{m})) - K(\lambda, \beta)$$

- where
 - $\Lambda(\beta)$: set of attention strategies available from prior β
 - $K: \beta \times \Lambda(\beta) \to \mathbb{R}$: cost of attention strategy

Comments

- Decision maker can choose any form of information structure
- Nests other models of information acquisition
 - Shannon Entropy
 - Fixed signals
 - Partitions
 - Fixed capacity
 - Sequential Search

The Data Set

- Data: State dependant stochastic choice
- For each $\omega_i \in \Omega$ and $f \in A$:
- $D_i(f)$: probability of choosing act f in state ω_i
- Easy to observe in the laboratory
- With assumptions, can be observed outside the lab

Testing Rational Inattention

- Question: If we don't make explicit assumptions about the costs of information, can we make any predictions about rationally inattentive behavior?
- Answer: Yes, if we assume that more information is more costly

An Aside: Blackwell Information Ordering

• λ is sufficient for λ' if there exists a $|T(\lambda)| \times |T(\lambda')|$ matrix B that

$$\sum_{j} B^{ij} = 1 \forall j$$

$$\lambda'_{m}(t^{j}) = \sum_{i} B^{ij} \lambda_{m}(t^{i}) \forall j$$

- The matrix B 'scrambles' the information in λ in order to get to λ'
- B^{ij} probability of going from subjective state t^i to the subjective state $t^{\prime j}$

Sufficiency: An Example

Sufficiency: An Example

Sufficiency: An Example

An Aside: Blackwell's Theorem

• Let $V(\beta, A, \lambda)$ be the *value* of using attentional structure λ in environment $\{A, \lambda\}$

$$V(\beta, A, \lambda) = \max_{\{C_t\}_{T(\lambda)} \in A} \sum_{m=1}^{M} \beta_m \sum_{t \in T(\lambda)} \lambda_m(t) U(C_t(\omega_m))$$

• An information structure λ is sufficient for information structure λ' if and only if

$$V(\beta, A, \lambda) \ge V(\beta, A, \lambda') \ \forall \ \{\beta, A\}$$

Observing Attentional Strategies

- Observation: Assuming more information is more costly, one subjective state per act
 - ullet Will never have t' and t' such that C(t')=C(t'')
- Why? Let $\{\lambda,C\}$ be such a strategy, with C(t')=C(t'') for $t',t''\in \mathcal{T}(\lambda)$
- Now consider alternative strategy $\{\lambda', C\}$ such that
 - $\lambda(t) = \lambda'(t) \ \forall \ t \neq t', t''$
 - λ' 'merges' t and t'' to state t^* defined by

$$t_{m}^{*} = \frac{\beta_{m} (\lambda_{m}(t') + \lambda_{m}(t''))}{\sum_{k=1}^{M} \beta_{k} (\lambda_{k}(t') + \lambda_{k}(t''))}$$

• Clearly λ is sufficient for λ'

Observing Attentional Strategies

Observing Attentional Strategies

• Means λ' is cheaper than λ , yet

$$V(\beta, A, \lambda) = V(\beta, A, \lambda')$$

(assuming choices were optimal under λ)

- Thus, never optimal to choose the same act in two states
- Means that we can recover attentional strategies from stochastic choice
 - For each chosen act f a subjective state t^f such that

$$\lambda_i(t^f) = D_i(f)$$

Optimal Behavior Under Blackwell Costs

Choice of act optimal given attentional strategy

Choice of attention strategy optimal

Optimal Choice of Act

Act	Payoff 47 red dots	Payoff 53 red dots
f ₂	20	0
g 2	0	10

Prior: {0.5, 0.5}

Optimal Choice of Acts

Optimal Choice of Acts

• Posterior probability of 47 red balls when act g was chosen

$$t_{47}^{g} = \frac{P(\omega = 47, g \text{ chosen})}{P(g \text{ chosen})}$$

$$= \frac{\frac{1}{4}}{\frac{1}{4} + \frac{2}{6}} = \frac{3}{7}$$

• But for this posterior

$$\frac{3}{7}U(f_{47}) + \frac{4}{7}U(f_{53}) = \frac{3}{7}20 + \frac{4}{7}0 = 8.6$$

$$\frac{3}{7}U(g_{47}) + \frac{4}{7}U(g_{53}) = \frac{3}{7}0 + \frac{4}{7}10 = 5.7$$

Condition 1

Condition 1 At every state $s \in T(\lambda)$, it must be the case that

$$C(s) \in \arg\max_{f \in A} \sum_{m=1}^{M} s_m U(f(\omega_m))$$

• In 2×2 case generates a cutoff c such that $t^f \ge c$ and $t^g \le c$

Optimal Choice of Attention Strategy Question 1

Act	Payoff 47 red dots	Payoff 53 red dots
f ₂	20	0
g 2	0	10

Prior: {0.5, 0.5}

Optimal Choice of Attention Strategy

Question 1

Optimal Choice of Attention Strategy Question 2

Act	Payoff 47 red dots	Payoff 53 red dots
F_1	10	0
G_1	0	10

Prior: {0.5, 0.5}

Optimal Choice of Attention Strategy

Question 2

V	λ_1	λ_2
$\{f_1,g_1\}$	$7\frac{1}{2}$	$6\frac{2}{3}$
$\{f_2,g_2\}$	$11\frac{1}{4}$	10

· Cost function must satisfy

$$V(\beta, \{f_1, g_1\}, \lambda_1) - K(\lambda_1, \beta) \geq V(\beta, \{f_1, g_1\}, \lambda_2) - K(\lambda_2, \beta)$$

$$V(\beta, \{f_2, g_2\}, \lambda_2) - K(\lambda_2, \beta) \geq V(\beta, \{f_2, g_2\}, \lambda_1) - K(\lambda_1, \beta)$$

Which implies

$$\frac{5}{6} = V(\beta, \{f_1, g_1\}, \lambda_1) - V(\beta, \{f_1, g_1\}, \lambda_2) \ge K(\lambda_1, \beta) - K(\lambda_2, \beta) \ge V(\beta, \{f_2, g_2\}, \lambda_1) - V(\beta, \{f_2, g_2\}, \lambda_2) = 1\frac{1}{4}$$

Optimal Choice of Attention Strategy

Surplus must be maximized by correct assignments

$$V(\beta, \{f_1, g_1\}, \lambda_1) - V(\beta, \{f_1, g_1\}, \lambda_2) + V(\beta, \{f_2, g_2\}, \lambda_2) - V(\beta, \{f_2, g_2\}, \lambda_1)$$
0

 To guarantee the existence of a cost function require a stronger condition

Condition 2 For any β and observed sequence of acts $A^1....A^K$ and associated information structures $\lambda^1...\lambda^K$

$$V(\beta, A^{1}, \lambda^{1}) - V(\beta, A^{1}, \lambda^{2}) + V(\beta, A^{2}, \lambda^{2}) - V(\beta, A^{2}, \lambda^{3}) + ... + V(\beta, A^{K}, \lambda^{K}) - V(\beta, A^{K}, \lambda^{1})$$
0

Theorem

For a sequence of decision problems $\{\beta,A_l\}_{l=1}^L$, attention strategies $\{\lambda^l\}_{l=1}^L$ and choice functions $\{C^l\}_{l=1}^L$ such that $C^l: T\left(\lambda^l\right) \to A^l$ the following two statements are equivalent

- 2 there exists a $K: \beta \times \Lambda(\beta) \to \mathbb{R}$ such that λ^I and C^I solve the decision problem for each $\{\beta, A^I\}$

Proof.

 $2 \rightarrow 1 \ \textit{Trivial}$

 $1 \rightarrow 2$ Rochet [1987]

- This problem is familiar from the implementation literature
- Say there were a set of environments $X_1....X_N$ and actions $B_1....B_M$ such that the utility of each environment and each state is given by

$$u(X_i, B_j)$$

- Say we want to implement a mechanism such that action $Y(X_i)$ is taken at in each environment.
- We need to find a taxation scheme $au: B_1....B_M o \mathbb{R}$ such that

$$u(X_i, Y(X_i)) - \tau(Y(X_i)) \geq u(X_i, B) - \tau(B)$$

$$\forall B_1 B_M$$

This is the same as our problem.

- Taxation theorem: this is the equivalent problem to the following:
 - Find $\theta: \{A_i\}_{i=1}^L o \mathbb{R}$ such that, for all A_i, A_j

$$V(\beta, A_i, \lambda^i) - \theta(A_i) \ge V(\beta, A_i, \lambda^j) - \theta(A_j)$$

• Just define $K(\lambda) = \theta(A_i)$ if $\lambda = \lambda^i$ for some i, or $= \infty$ otherwise

• Now, pick some arbitrary A_0 and define

$$T(A) = \sup_{\mathit{all chains s.t A}_0 \ \mathit{to A} = A_M} \sum_{n=1}^{M-1} V(eta, A_{i+1}, \lambda^i) - V(eta, A_i, \lambda^i)$$

- Condition 2 implies that $T(A_0) = 0$
- It also implies that

$$T(A_0) \ge T(A_i) + V(\beta, A_0, \lambda^i) - V(\beta, A_i, \lambda^i)$$

• So $T(A_i)$ is bounded

Proof

• Furthermore, for any A_i A_j we have

$$T(A_i) \ge T(A_j) + V(\beta, A_i, \lambda^j) - V(\beta, A_j, \lambda^j)$$

• So, setting $\theta(A_j) = V(\beta, A_j, \lambda^j) - T(A_j)$, we get

$$V(\beta, A_i, \lambda^i) - \theta(A_i) \ge V(\beta, A_i, \lambda^j) - \theta(A_j)$$

Cost Function and Blackwell Ordering

• Observation: if λ is sufficient for λ' , then

$$V(\beta, A, \lambda) \ge V(\beta, A, \lambda')$$

- for all β , A
- Thus, for any cost function that rationalizes behavior

$$V(\beta, A', \lambda') - K(\beta, \lambda') \geq V(\beta, A', \lambda) - K(\beta, \lambda)$$

$$0 \geq V(\beta, A', \lambda') - V(\beta, A', \lambda) \geq$$

$$K(\beta, \lambda') - K(\beta, \lambda)$$

$$\Rightarrow K(\beta, \lambda) \geq K(\beta, \lambda')$$

- Cost function will weakly obey Blackwell
- For unchosen information structures, assume cost is equal to lowest cost chosen Blackwell dominant option

Cost Function and Blackwell Ordering

- Does not guarantee strict observance with Blackwell
- Example: two states, $\beta_1=$ 0.5, 3 acts

Act	Payoff 47 red dots	Payoff 53 red dots
f	10	0
g	0	10
h	7.5	7.5

- Strategy $\lambda_1(t^f) = 0.75$, $\lambda_2(t^f) = 0.75$.
- $V(\beta, A, \lambda) = 7.5$