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The Story So Far.....

Last time we introduced a general model of rational
inattention

Made only limited assumptions about the cost of attention

Today we will introduce cost function based on the concept of
Shannon Mutual Information

e Most common cost function used in the rational inattention
literature
Discuss some of its properties

o Relation to Logistic choice
e Linear Quadratic Gaussian Case
e Discrete Choice of Actions

Introduce an application: Pricing with a rationally inattentive
agent



Plan for Today

e Introduction to Shannon Entropy and Mutual Information
e Properties of Rational Inattention with Shannon Entropy
e Application [Martin 2012]



Shannon Entropy

e Shannon Entropy is a measure of how much ‘missing
information’ there is in a probability distribution

e In other words - how much we do not know, or how much we
would learn from resolving the uncertainty

e For a random variable X that takes the value x; with
probability p(x;) for i = 1...n, defined as

H(X) = E(=In(p(x))

= _Zp |n P:
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e Can think of it as how much we learn from result of
experiment



Justification for Shannon Entropy

e Say we want our measure of entropy to have the following
features

e Depends only on the probability distribution
 H(X) =H(p)



Justification for Shannon Entropy

e Say we want our measure of entropy to have the following
features

e Depends only on the probability distribution

e Maximized at a uniform probability distribution

o max,cam H(p) = H ({ﬁ I\14 ﬁ})



Justification for Shannon Entropy

Say we want our measure of entropy to have the following
features

Depends only on the probability distribution
Maximized at a uniform probability distribution

Unaffected by adding zero probability state
o H({p1....pm}) = H({p1....Pm.0})



Justification for Shannon Entropy

Say we want our measure of entropy to have the following
features

Depends only on the probability distribution
Maximized at a uniform probability distribution
Unaffected by adding zero probability state
Additive

e H(X,Y) = H(X) + £, p(x)H(Y]x)
e (Most ‘controversial’ - other entropies relax this assumption)



Justification for Shannon Entropy

Say we want our measure of entropy to have the following
features

Depends only on the probability distribution
Maximized at a uniform probability distribution
Unaffected by adding zero probability state
Additive

Then Entropy must be of the form (Khinchin 1957)

H(X) = —k ZP(X:') In(p;)



Entropy and Information Costs

e Related to the notion of entropy is the notion of Mutual
Information

(X, Y) =3 p(x.y) '°gm

e Measure of how much information one variable tells you about
another

e Note that /(X,Y) =0if X and Y are independent



Entropy and Information Costs

e Note also that mutual information can be rewritten in the
following way

I(X,Y) = ) ) p(xy) jog PLY)_

p(x)

= ZZP(W In P(x|y) - Zpry In p(x
= Zp Zp x|y)InP(x]y) — Zp In p(x

— H(X) -~ H(X]Y)

e Difference between entropy of X and the expected entropy of
X once Y is known



Shannon Entropy and Rational Inattention

e Most papers assume that information costs are linear in the
mutual information of the prior and the posterior

KN = KT E b (B ’g)

m tGT

= kY P Ztmlntm Y B InB

teT(A)




Shannon Entropy

Key feature: Entropy is strictlyconcave
So negative of entropy is strictly convex
Say we choose a signal structure with two posteriors t and t/
It must be that
p(t)t+p(t)t' = p

SO

p(t)H(t) +p(t)H(t') > H(p(t)t+ p(t)t')
= H(p)

So the cost of ‘learning something’ is always positive



Solving Rational Inattention Models

e Solving Rational Attention Models can be difficult analytically

e General approach - ignore choice of information structure,
instead focus on joint distribution of choice variable and state

e i.e. choose state dependent stochastic choice directly

e Example (Matejka and McKay 2011) - continuous state space,
finite action space



Solving Rational Inattention Models

e D set of all state contingent stochastic choice functions for
some state space () and set of acts A

e Remember D, (f) is the probability of choosing f in state w

e Remember that , for D € D, the mutual information between
choices f and objective state w is given by

I(D,w) = H(f) — H(f|w)



Solving Rational Inattention Models

e Decision problem of agent is to choose D € D to maximize

Y. [ u(f(@)Du(f)G(dew)
feA’W

A [Z/ Doy (f)In Doy (f)G(dw) + Y D(f) In D(f)
feA’w

feA

e Subject to

Y Dy(f) =1 Almost surely
feA

e Where D(f) is the unconditional probability of choosing f



The Lagrangian Function

A [2/ Deo(f)In Dy ()G (dw) + Y D(f)In D(f)
feadw feA

)5 ptr ] 6(dw)

feA
e FOC WRT D, (f) (assuming >0)
u(f(w)) —u(w) +A[IND(f)+1—1InDy(f) —1] =0

e Note that this is a convex problem



Solution

FOC WRT D,/(f) (assuming >0)

u(F(w)) — #(w) + A[InD(F) + 1 —In D(F) — 1] = 0

Which gives
Do (f)
Plug this into
) Du(f)
fecA

Which in turn gives...

=D(f)exp A

= 1

= = Y D(F)e"
feA



Comments

D(f) expu(f(Aw))
Do (f) = u(F(@))
YreaD(f)e

Similar in form to logistic random choice

If alternatives are ex ante identical, this is logistic choice

Otherwise choice probabilities are ‘warped’ by D(f) - which
contains information on the prior value of each option

As costs go to zero, deterministically pick best option in that
state

As costs go to infinity, deterministically pick the best option
ex ante



Comments

The above is not a complete solution
Does not solve for D(f)

One can completely characterize solution in closed form if one
knows what acts are chosen in what states

Checking which acts are chosen is a hard problem
There are algorithms that can solve these problems

e Blahut-Arimoto Algorithm
e See Cover and Thomas [1991] for more details

May be better to tackle choice of posteriors directly



Choosing Posteriors Directly

e Consider the case of two state and two acts

w1 Wy

f f

f u}g u%g
& up uj

e And the problem of choosing posterior states t and s (where
number is probability of state 1 in that posterior)



Choosing Posteriors Directly

e Optimization problem (assuming that f is chosen at t)
P(t) [tu] + (1= )uf | + (1= P(¢)) [suf + (1 )]
—kP(t) ([tInt+ (1 —t)In(L—t)]+ (L= P(t) [sIns+ (1 —s)

e subject to
P(t)t+ (1-P(t))s = B



First Order Conditions

[u{—ué—klnlit} = U

[uf—ug—klnlis} = U

(0] + (1= t)uf | — [suf + (1 - 5)uf]
—k(tlnt+(1—t)In(l1—t)—sins—(1—s)Ins)
= u(t—s)



Implies

(0] + (1= t)uf | — [suf + (1 5)uf]
—k(tlhht—(1—t)In(l—t)+sins+(1—s)Ins)
_ [u{—ug_kant_ln(l—t))} (t—s)

s{ul’(—uf—k(lnt—l—lns)} +
(1-s) [ug—ug—k(|n(1—t)+|n(1—s))}
= 0
= [u{—uf—k(lnt—lns)}

= [uf —f — Kk (n(1— 1) ~In(1~5)]



Implies

f g f g
o —u U — iy

Int—Ins In(1—1t)—In(1—5s) =k

e This tells us

(1] Um—ufh is a constant
Int,—Insy

® Posterior beliefs do not depend on priors

e Both of these results are general



The Linear Quadratic Gaussian Case

One case in which this problem becomes more tractable is if
the input and output signal are both normal

The entropy of a normal variable X ~ N(u,02) is given by
H(Y) = In(2mec?)

If Y and X are both normal, then

HOYX) = [ £60 | vl intyx)d(y)d ()

X

As y|x is distributed normally with variance (1 — p*)c7, this
becomes

H(Y|IX) = /)(f(x)ln(Zneai‘X)d(x)

1
= 5 In(27te(1 — pQ)Uf,)



The Linear Quadratic Gaussian Case

As mutual information is given by
H(Y) = H(Y|X)

= In(2mec}) — % In(27te(1 — p°)0?)

In this case, the mutual information is given by
1
ZIn(1—p?
5 In(1—p%)
So information costs depend only on the covariance of the two
signals!
It turns out that joint normality is optimal if the utility

function is quadratic in the relationship between the objective
and subjective state

e Choice of variance on some normally distributed error term

However, note that some papers assume normality (this is
bad)



Discrete Choice of Actions

Outside the linear quadratic case, often the optimal solution
has discrete number of chosen actions

Even if

e State space is continuous
e Action space is continuous

See Sims [2006], Matejka [2008]

Despite the fact that the state of the world is continuous,
prices may jump between a discrete number of values

Foundation for sticky prices?



Pricing Game

e Sequential pricing game

e One buyer, one seller, one product of uncertain quality

o Seller gets free info on quality, sets price

e Buyer gets free info on price and can obtain costly info on
quality, decides to buy or not



Market Setting

e Once off sales encounter

e One buyer, one seller, one product



Market Setting

o Nature determines quality 0 € {0,,04}, in R4
e Prior A =Pr(8y)



Market Setting

e Seller learns quality, sets price p € {p., pr}, in Ry

o Generalizes to many, internalized first and fully

pH




Market Setting

e Buyer learns p, forms interim belief ﬁp of high quality

e Based on prior A (brand) and seller strategies




Market Setting

e Choose information technology 7 € 1P

o :{01,0y} —A(S), finite support, S = [0, 1] posterior
beliefs




Market Setting

 Nature determines a posterior belief s € [0, 1]

e Posterior belief about product being high quality




Market Setting

e Decides whether to buy or not

e Just a unit of the good




Market Setting

e Standard utility and profit functions (risk neutral EU)

e u € Ry is outside option, K € R is Shannon cost

eL- pl_ K, R_

u-K,0




Buyer's Attention

e Shannon cost for information technology 7t, cost x, and

interim beliefs §

K(n,;{,[%p):
K Y. m(s)(sin(s)+(1—s)In(1—5))

seS(m)

(B (8p) + (1=,) 1 (1-6,))



Equilibrium

e Only two mixed strategy PBE w/ rational inattention:
e Always exists “Pooling low”

e High quality sellers charge a low price with probability 1
e Low quality sellers charge a low price with probability 1
e Strategic ignorance: Buyers never attend, strong beliefs

o Always exists “Mimic high”

e High quality sellers charge a high price with probability 1
e Low quality sellers charge a high price with probability

1 € [0,1] (mimicking)
e Buyers typically attend at high prices



Theorem

For every cost k, there exists an equilibrium ( “mimic high”) where
high quality sellers price high with probability 1 and low quality
sellers price high with a unique probability € [0, 1].

e Why unique mimicking 17
e When 5 € (0,1), need low quality seller indifference:

PL

d x py = pL = dit =
PH PH " oy,

where df is conditional demand

e As 77 increases, dgb strictly decreases, so single crossing with
L
oF if any

e Why is dg,ﬁ strictly decreasing in 17



e Threshold posterior for each action: ng (not buy at py) and

s, (buy at pr)
n i _ (On—pH)—u
s0 K

PH

(17| _ (Br—pu)—u
1—s9 K

PH

e Key: Thresholds do not depend on beliefs

e Property of rational inattention



o Let ﬁpH be the prior probability that the good is of high
quality given that it is of high price

e By Bayes Rule

a4 o (1=B,)di

P (1= B, )dek + B, detl

o (1-B,,)(1—di)

P (1-B,,)(1—ds) + B, (1— do)

1—sl
PH _ 0
0 <SI%H 52/-1) (ﬁp"’ sPH)
o —

PH (1_ﬁpH>

e Because thresholds do not depend on beliefs, conditional
demand is

e Strictly increasing in interim beliefs ﬁpH
e So strictly decreasing in mimicking 7



e What is the unique value of 77 when 7 € (0,1)?

n= A (1_52/-/) (1_511/-1)
1=As), (1=sp,) + o (55, — sp)

0ASK—>0,17—>0
e Ask — o0, 11 —7?
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