Bounded Rationality Lecture 3

Mark Dean

Princeton University - Behavioral Economics

The Story So Far.....

- Last time we introduced a general model of rational inattention
- · Made only limited assumptions about the cost of attention
- Today we will introduce cost function based on the concept of Shannon Mutual Information
 - Most common cost function used in the rational inattention literature
- Discuss some of its properties
 - Relation to Logistic choice
 - Linear Quadratic Gaussian Case
 - Discrete Choice of Actions
- Introduce an application: Pricing with a rationally inattentive agent

Plan for Today

- Introduction to Shannon Entropy and Mutual Information
- Properties of Rational Inattention with Shannon Entropy
- Application [Martin 2012]

Shannon Entropy

- Shannon Entropy is a measure of how much 'missing information' there is in a probability distribution
- In other words how much we do not know, or how much we would learn from resolving the uncertainty
- For a random variable X that takes the value x_i with probability $p(x_i)$ for i = 1...n, defined as

$$H(X) = E(-\ln(p(x_i))$$

=
$$-\sum_i p(x_i) \ln(p_i)$$

Shannon Entropy

Can think of it as how much we learn from result of experiment

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
 - H(X) = H(p)

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution

•
$$\max_{p \in \Delta^M} H(p) = H\left(\left\{\frac{1}{M}, \frac{1}{M}, ..., \frac{1}{M}\right\}\right)$$

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- · Unaffected by adding zero probability state
 - $H({p_1...p_M}) = H({p_1...p_M,0})$

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
 - $H(X, Y) = H(X) + \sum_{x} p(x)H(Y|x)$
 - (Most 'controversial' other entropies relax this assumption)

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
- Then Entropy must be of the form (Khinchin 1957)

$$H(X) = -k \sum_{i} p(x_i) \ln(p_i)$$

Entropy and Information Costs

 Related to the notion of entropy is the notion of Mutual Information

$$I(X, Y) = \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

- Measure of how much information one variable tells you about another
- Note that I(X, Y) = 0 if X and Y are independent

Entropy and Information Costs

 Note also that mutual information can be rewritten in the following way

$$I(X, Y) = \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

$$= \sum_{x} \sum_{y} p(x, y) \log \frac{p(x|y)}{p(x)}$$

$$= \sum_{y} \sum_{x} p(x, y) \ln P(x|y) - \sum_{x} \sum_{y} p(x, y) \ln p(x)$$

$$= \sum_{y} p(y) \sum_{x} p(x|y) \ln P(x|y) - \sum_{y} p(x) \ln p(x)$$

$$= H(X) - H(X|Y)$$

 Difference between entropy of X and the expected entropy of X once Y is known

Shannon Entropy and Rational Inattention

 Most papers assume that information costs are linear in the mutual information of the prior and the posterior

$$K(\beta, \lambda) = k \sum_{m} \sum_{t \in T(\lambda)} \beta_{m} \lambda_{m}(t) \ln \frac{\lambda_{m}(t)}{P(t)}$$
$$= k \sum_{t \in T(\lambda)} P(t) \sum_{m} t_{m} \ln t_{m} - \sum_{m} \beta_{m} \ln \beta_{m}$$

Shannon Entropy

- Key feature: Entropy is strictly concave
- So negative of entropy is strictly convex
- Say we choose a signal structure with two posteriors t and t'
- It must be that

$$p(t)t + p(t')t' = \beta$$

SO

$$p(t)H(t) + p(t')H(t') > H(p(t)t + p(t')t')$$

= $H(\beta)$

• So the cost of 'learning something' is always positive

Solving Rational Inattention Models

- Solving Rational Attention Models can be difficult analytically
- General approach ignore choice of information structure, instead focus on joint distribution of choice variable and state
 - i.e. choose state dependent stochastic choice directly
- Example (Matejka and McKay 2011) continuous state space, finite action space

Solving Rational Inattention Models

- $\mathcal D$ set of all state contingent stochastic choice functions for some state space Ω and set of acts A
- Remember $D_{\omega}(f)$ is the probability of choosing f in state ω
- Remember that , for $D \in \mathcal{D}$, the mutual information between choices f and objective state ω is given by

$$I(D, \omega) = H(f) - H(f|\omega)$$

Solving Rational Inattention Models

ullet Decision problem of agent is to choose $D\in\mathcal{D}$ to maximize

$$\sum_{f \in A} \int_{\omega} u(f(\omega)) D_{\omega}(f) G(d\omega)$$
$$-\lambda \left[\sum_{f \in A} \int_{\omega} D_{\omega}(f) \ln D_{\omega}(f) G(d\omega) + \sum_{f \in A} D(f) \ln D(f) \right]$$

Subject to

$$\sum_{f\in A} \mathcal{D}_{\omega}(f) = 1$$
 Almost surely

• Where D(f) is the unconditional probability of choosing f

The Lagrangian Function

$$\begin{split} L(D) &= \sum_{f \in A} \int_{\omega} u(f(\omega)) D_{\omega}(f) G(d\omega) \\ &- \lambda \left[\sum_{f \in A} \int_{\omega} D_{\omega}(f) \ln D_{\omega}(f) G(d\omega) + \sum_{f \in A} D(f) \ln D(f) \right] \\ &- \int_{\omega} \mu(\omega) \left[\sum_{f \in A} D_{\omega}(f) - 1 \right] G(d\omega) \end{split}$$

• FOC WRT $D_{\omega}(f)$ (assuming >0)

$$u(f(\omega)) - \mu(\omega) + \lambda[\ln D(f) + 1 - \ln D_{\omega}(f) - 1] = 0$$

Note that this is a convex problem

• FOC WRT $D_{\omega}(f)$ (assuming >0)

$$u(f(\omega)) - \mu(\omega) + \lambda[\ln D(f) + 1 - \ln D_{\omega}(f) - 1] = 0$$

Which gives

$$D_{\omega}(f) = D(f) \exp^{\frac{u(f(\omega)) - \mu(\omega)}{\lambda}}$$

Plug this into

$$\sum_{f \in A} D_{\omega}(f) = 1$$

$$\Rightarrow e^{\frac{\mu(v)}{\lambda}} = \sum_{f \in A} D(f) e^{\frac{u(f(\omega))}{\lambda}}$$

Which in turn gives...

Comments

$$D_{\omega}(f) = \frac{D(f) \exp \frac{u(r(\omega))}{\lambda}}{\sum_{f \in A} D(f) e^{\frac{u(f(\omega))}{\lambda}}}$$

- Similar in form to logistic random choice
- If alternatives are ex ante identical, this is logistic choice
- Otherwise choice probabilities are 'warped' by D(f) which contains information on the prior value of each option
- As costs go to zero, deterministically pick best option in that state
- As costs go to infinity, deterministically pick the best option ex ante

Comments

- The above is not a complete solution
- Does not solve for D(f)
- One can completely characterize solution in closed form if one knows what acts are chosen in what states
- Checking which acts are chosen is a hard problem
- There are algorithms that can solve these problems
 - Blahut-Arimoto Algorithm
 - See Cover and Thomas [1991] for more details
- May be better to tackle choice of posteriors directly

Choosing Posteriors Directly

• Consider the case of two state and two acts

$$\begin{array}{ccc} & \omega_1 & \omega_2 \\ f & u_1^f & u_2^f \\ g & u_1^g & u_1^g \end{array}$$

• And the problem of choosing posterior states t and s (where number is probability of state 1 in that posterior)

Choosing Posteriors Directly

• Optimization problem (assuming that f is chosen at t)

$$egin{aligned} P(t) \left[t u_1^f + (1-t) u_2^f
ight] + (1-P(t)) \left[s u_1^g + (1-s) u_2^g
ight] \ - k P(t) \left(\left[t \ln t + (1-t) \ln (1-t)
ight] + (1-P(t) \left[s \ln s + (1-s)
ight] \end{aligned}$$

subject to

$$P(t)t + (1 - P(t))s = \beta$$

First Order Conditions

$$\begin{bmatrix} u_1^f - u_2^f - k \ln \frac{t}{1 - t} \end{bmatrix} = \mu$$
$$\begin{bmatrix} u_1^g - u_2^g - k \ln \frac{s}{1 - s} \end{bmatrix} = \mu$$

$$\begin{split} \left[t u_1^f + (1-t) u_2^f \right] - \left[s u_1^g + (1-s) u_2^g \right] \\ - k \left(t \ln t + (1-t) \ln (1-t) - s \ln s - (1-s) \ln s \right) \\ = & \mu(t-s) \end{split}$$

Implies

$$\begin{split} \left[t u_1^f + (1-t) u_2^f \right] - \left[s u_1^g + (1-s) u_2^g \right] \\ - k \left(t \ln t - (1-t) \ln(1-t) + s \ln s + (1-s) \ln s \right) \\ = \left[u_1^f - u_2^f - k \left(\ln t - \ln(1-t) \right) \right] (t-s) \\ s \left[u_1^f - u_1^g - k \left(\ln t + \ln s \right) \right] + \\ \left(1-s \right) \left[u_2^f - u_2^g - k \left(\ln(1-t) + \ln(1-s) \right) \right] \\ = 0 \\ \Rightarrow \left[u_1^f - u_1^g - k \left(\ln t - \ln s \right) \right] \\ = \left[u_2^f - u_2^g - k \left(\ln(1-t) - \ln(1-s) \right) \right] \\ = 0 \end{split}$$

Implies

$$\frac{u_1^f - u_1^g}{\ln t - \ln s} = \frac{u_2^f - u_2^g}{\ln (1 - t) - \ln (1 - s)} = k$$

- This tells us
 - 1 $\frac{u_m^f u_m^g}{\ln t_m \ln s_m}$ is a constant
 - 2 Posterior beliefs do not depend on priors
- Both of these results are general

The Linear Quadratic Gaussian Case

- One case in which this problem becomes more tractable is if the input and output signal are both normal
- The entropy of a normal variable $X \sim N(\mu, \sigma_x^2)$ is given by

$$H(Y) = \ln(2\pi e \sigma_x^2)$$

• If Y and X are both normal, then

$$H(Y|X) = \int_X f(x) \int_Y f(y|x) \ln(y|x) d(y) d(x)$$

• As y|x is distributed normally with variance $(1-\rho^2)\sigma_y^2$, this becomes

$$H(Y|X) = \int_{X} f(x) \ln(2\pi e \sigma_{y|x}^{2}) d(x)$$
$$= \frac{1}{2} \ln(2\pi e (1 - \rho^{2}) \sigma_{y}^{2})$$

The Linear Quadratic Gaussian Case

As mutual information is given by

$$\begin{split} &H(Y)-H(Y|X)\\ =& &\ln(2\pi e\sigma_y^2)-\frac{1}{2}\ln(2\pi e(1-\rho^2)\sigma_y^2) \end{split}$$

In this case, the mutual information is given by

$$\frac{1}{2}\ln(1-\rho^2)$$

- So information costs depend only on the covariance of the two signals!
- It turns out that joint normality is optimal if the utility function is quadratic in the relationship between the objective and subjective state
 - Choice of variance on some normally distributed error term
- However, note that some papers assume normality (this is bad)

Discrete Choice of Actions

- Outside the linear quadratic case, often the optimal solution has discrete number of chosen actions
- Even if
 - State space is continuous
 - Action space is continuous
- See Sims [2006], Matejka [2008]
- Despite the fact that the state of the world is continuous, prices may jump between a discrete number of values
- Foundation for sticky prices?

Pricing Game

- Sequential pricing game
 - One buyer, one seller, one product of uncertain quality
 - Seller gets free info on quality, sets price
 - Buyer gets free info on price and can obtain costly info on quality, decides to buy or not

- Once off sales encounter
 - One buyer, one seller, one product

- Nature determines quality $\theta \in \{ heta_{L}, heta_{H}\}$, in \mathbb{R}_{+}
 - Prior $\lambda = \Pr(\theta_H)$

- Seller learns quality, sets price $p \in \{p_L, p_H\}$, in \mathbb{R}_+
 - · Generalizes to many, internalized first and fully

- Buyer learns p, forms interim belief β_p of high quality
 - Based on prior λ (brand) and seller strategies

- Choose information technology $\pi \in \Pi^{\beta_p}$
 - $\pi:\{\theta_L,\theta_H\} \to \Delta(S)$, finite support, S=[0,1] posterior beliefs

- Nature determines a posterior belief $s \in [0, 1]$
 - Posterior belief about product being high quality

- Decides whether to buy or not
 - Just a unit of the good

- Standard utility and profit functions (risk neutral EU)
 - $u \in \mathbb{R}_+$ is outside option, $K \in \mathbb{R}_+$ is Shannon cost

Buyer's Attention

• Shannon cost for information technology π , cost κ , and interim beliefs β_n

$$\begin{split} \mathcal{K}\left(\pi,\kappa,\beta_{p}\right) &= \\ \kappa \sum_{s \in S(\pi)} \pi\left(s\right)\left(s\ln\left(s\right) + \left(1-s\right)\ln\left(1-s\right)\right) \\ &-\kappa\left(\beta_{p}\ln\left(\beta_{p}\right) + \left(1-\beta_{p}\right)\ln\left(1-\beta_{p}\right)\right) \end{split}$$

Equilibrium

- Only two mixed strategy PBE w/ rational inattention:
 - Always exists "Pooling low"
 - High quality sellers charge a low price with probability 1
 - Low quality sellers charge a low price with probability 1
 - Strategic ignorance: Buyers never attend, strong beliefs
 - Always exists "Mimic high"
 - High quality sellers charge a high price with probability 1
 - Low quality sellers charge a *high price* with probability $\eta \in [0, 1]$ (mimicking)
 - Buyers typically attend at high prices

Theorem

For every cost κ , there exists an equilibrium ("mimic high") where high quality sellers price high with probability 1 and low quality sellers price high with a unique probability $\eta \in [0,1]$.

- Why unique mimicking η ?
- When $\eta \in (0,1)$, need low quality seller indifference:

$$d_{p_H}^{\theta_L} \times p_H = p_L \Rightarrow d_{p_H}^{\theta_L} = \frac{p_L}{p_H}$$

where $d_{p\mu}^{\theta_L}$ is conditional demand

- As η increases, $d_{p_H}^{\theta_L}$ strictly decreases, so single crossing with $\frac{p_L}{p_H}$ if any
- Why is $d_{p_H}^{\theta_L}$ strictly decreasing in η ?

• Threshold posterior for each action: $s_{p_H}^0$ (not buy at p_H) and $s_{p_H}^1$ (buy at p_H)

$$s_{p_H}^1$$
 (buy at p_H)
$$\left(s_{p_H}^1 \right) \qquad \left(\theta_H - p_H \right) - u$$

$$\ln \left(\frac{s_{p_H}^1}{s_{p_H}^0} \right) = \frac{(\theta_H - p_H) - u}{\kappa}$$

$$\ln \left(\frac{1 - s_{p_H}^1}{1 - s_{p_H}^0} \right) = \frac{(\theta_L - p_H) - u}{\kappa}$$

- Key: Thresholds do not depend on beliefs
- Property of rational inattention

- Let β_{p_H} be the prior probability that the good is of high quality given that it is of high price
- By Bayes Rule

$$egin{array}{lll} s_{
ho_H}^1 &=& rac{(1-eta_{
ho_H})d_{
ho_H}^{ heta_L}}{(1-eta_{
ho_H})d_{
ho_H}^{ heta_L}+eta_{
ho_H}d_{
ho_H}^{ heta_H}} \ s_{
ho_H}^0 &=& rac{(1-eta_{
ho_H})(1-d_{
ho_H}^{ heta_L})}{(1-eta_{
ho_H})(1-d_{
ho_H}^{ heta_L})+eta_{
ho_H}(1-d_{
ho_H}^{ heta_H})} \ d_{
ho_H}^{ heta_L} &=& rac{\left(rac{1-s_{
ho_H}^1}{s_{
ho_H}^1-s_{
ho_H}^0}
ight)\left(eta_{
ho_H}-s_{
ho_H}^0
ight)}{\left(1-eta_{
ho_H}
ight)} \end{array}$$

- Because thresholds do not depend on beliefs, conditional demand is
 - Strictly increasing in interim beliefs β_{pH}
 So strictly decreasing in mimicking η

• What is the unique value of η when $\eta \in (0,1)$?

That is the angle value of
$$\eta$$
 when $\eta \in (0,1)$.

$$\eta = rac{\lambda}{1-\lambda} rac{\left(1-s_{p_H}^0
ight)\left(1-s_{p_H}^1
ight)}{s_{p_H}^0\left(1-s_{p_H}^1
ight) + rac{p_L}{p_H}\left(s_{p_H}^1-s_{p_H}^0
ight)}$$

• As $\kappa \to 0$, $\eta \to 0$ • As $\kappa \to \infty$, $\eta \to ?$