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The Story So Far.....

� Last time we introduced a general model of rational
inattention

� Made only limited assumptions about the cost of attention
� Today we will introduce cost function based on the concept of
Shannon Mutual Information

� Most common cost function used in the rational inattention
literature

� Discuss some of its properties
� Relation to Logistic choice
� Linear Quadratic Gaussian Case
� Discrete Choice of Actions

� Introduce an application: Pricing with a rationally inattentive
agent



Plan for Today

� Introduction to Shannon Entropy and Mutual Information
� Properties of Rational Inattention with Shannon Entropy
� Application [Martin 2012]



Shannon Entropy

� Shannon Entropy is a measure of how much �missing
information�there is in a probability distribution

� In other words - how much we do not know, or how much we
would learn from resolving the uncertainty

� For a random variable X that takes the value xi with
probability p(xi ) for i = 1...n, de�ned as

H(X ) = E (� ln(p(xi ))
= �∑

i
p(xi ) ln(pi )



Shannon Entropy

� Can think of it as how much we learn from result of
experiment



Justi�cation for Shannon Entropy

� Say we want our measure of entropy to have the following
features

� Depends only on the probability distribution
� H(X ) = H(p)
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Justi�cation for Shannon Entropy

� Say we want our measure of entropy to have the following
features

� Depends only on the probability distribution
� Maximized at a uniform probability distribution

� Una¤ected by adding zero probability state
� H(fp1....pM g) = H(fp1....pM , 0g)



Justi�cation for Shannon Entropy

� Say we want our measure of entropy to have the following
features

� Depends only on the probability distribution
� Maximized at a uniform probability distribution

� Una¤ected by adding zero probability state
� Additive

� H(X ,Y ) = H(X ) +∑x p(x)H(Y jx)
� (Most �controversial�- other entropies relax this assumption)



Justi�cation for Shannon Entropy

� Say we want our measure of entropy to have the following
features

� Depends only on the probability distribution
� Maximized at a uniform probability distribution

� Una¤ected by adding zero probability state
� Additive
� Then Entropy must be of the form (Khinchin 1957)

H(X ) = �k∑
i
p(xi ) ln(pi )



Entropy and Information Costs

� Related to the notion of entropy is the notion of Mutual
Information

I (X ,Y ) = ∑
x

∑
y
p(x , y) log

p(x , y)
p(x)p(y)

� Measure of how much information one variable tells you about
another

� Note that I (X ,Y ) = 0 if X and Y are independent



Entropy and Information Costs

� Note also that mutual information can be rewritten in the
following way

I (X ,Y ) = ∑
x

∑
y
p(x , y) log

p(x , y)
p(x)p(y)

= ∑
x

∑
y
p(x , y) log

p(x jy)
p(x)

= ∑
y

∑
x
p(x , y) lnP(x jy)�∑

x
∑
y
p(x , y) ln p(x)

= ∑
y
p(y)∑

x
p(x jy) lnP(x jy)�∑

y
p(x) ln p(x)

= H(X )�H(X jY )

� Di¤erence between entropy of X and the expected entropy of
X once Y is known



Shannon Entropy and Rational Inattention

� Most papers assume that information costs are linear in the
mutual information of the prior and the posterior

K (β,λ) = k∑
m

∑
t2T (λ)

βmλm(t) ln
λm(t)
P(t)

= k ∑
t2T (λ)

P(t)∑
m
tm ln tm �∑

m
βm ln βm



Shannon Entropy

� Key feature: Entropy is strictlyconcave
� So negative of entropy is strictly convex
� Say we choose a signal structure with two posteriors t and t 0

� It must be that
p(t)t + p(t 0)t 0 = β

� so

p(t)H(t) + p(t 0)H(t 0) > H(p(t)t + p(t 0)t 0)

= H(β)

� So the cost of �learning something�is always positive



Solving Rational Inattention Models

� Solving Rational Attention Models can be di¢ cult analytically
� General approach - ignore choice of information structure,
instead focus on joint distribution of choice variable and state

� i.e. choose state dependent stochastic choice directly

� Example (Matejka and McKay 2011) - continuous state space,
�nite action space



Solving Rational Inattention Models

� D set of all state contingent stochastic choice functions for
some state space Ω and set of acts A

� Remember Dω(f ) is the probability of choosing f in state ω

� Remember that , for D 2 D, the mutual information between
choices f and objective state ω is given by

I (D,ω) = H(f )�H(f jω)



Solving Rational Inattention Models

� Decision problem of agent is to choose D 2 D to maximize

∑
f 2A

Z
ω
u(f (ω))Dω(f )G (dω)

�λ

"
∑
f 2A

Z
ω
Dω(f ) lnDω(f )G (dω) + ∑

f 2A
D(f ) lnD(f )

#

� Subject to
∑
f 2A

Dω(f ) = 1 Almost surely

� Where D(f ) is the unconditional probability of choosing f



The Lagrangian Function

L(D) = ∑
f 2A

Z
ω
u(f (ω))Dω(f )G (dω)

�λ

"
∑
f 2A

Z
ω
Dω(f ) lnDω(f )G (dω) + ∑

f 2A
D(f ) lnD(f )

#

�
Z

ω
µ(ω)

"
∑
f 2A

Dω(f )� 1
#
G (dω)

� FOC WRT Dω(f ) (assuming >0)

u(f (ω))� µ(ω) + λ[lnD(f ) + 1� lnDω(f )� 1] = 0

� Note that this is a convex problem



Solution

� FOC WRT Dω(f ) (assuming >0)

u(f (ω))� µ(ω) + λ[lnD(f ) + 1� lnDω(f )� 1] = 0

� Which gives
Dω(f ) = D(f ) exp

u(f (ω))�µ(ω)
λ

� Plug this into

∑
f 2A

Dω(f ) = 1

) e
µ(v )

λ = ∑
f 2A

D(f )e
u(f (ω))

λ

� Which in turn gives...



Comments

Dω(f ) =
D(f ) exp

u(f (ω))
λ

∑f 2A D(f )e
u(f (ω))

λ

� Similar in form to logistic random choice

� If alternatives are ex ante identical, this is logistic choice
� Otherwise choice probabilities are �warped�by D(f ) - which
contains information on the prior value of each option

� As costs go to zero, deterministically pick best option in that
state

� As costs go to in�nity, deterministically pick the best option
ex ante



Comments

� The above is not a complete solution
� Does not solve for D(f )
� One can completely characterize solution in closed form if one
knows what acts are chosen in what states

� Checking which acts are chosen is a hard problem
� There are algorithms that can solve these problems

� Blahut-Arimoto Algorithm
� See Cover and Thomas [1991] for more details

� May be better to tackle choice of posteriors directly



Choosing Posteriors Directly

� Consider the case of two state and two acts

ω1 ω2

f uf1 uf2
g ug1 ug1

� And the problem of choosing posterior states t and s (where
number is probability of state 1 in that posterior)



Choosing Posteriors Directly

� Optimization problem (assuming that f is chosen at t)

P(t)
h
tuf1 + (1� t)uf2

i
+ (1� P(t)) [sug1 + (1� s)u

g
2 ]

�kP(t) ([t ln t + (1� t) ln(1� t)] + (1� P(t) [s ln s + (1� s) ln s ])

� subject to
P(t)t + (1� P(t))s = β



First Order Conditions

�
uf1 � uf2 � k ln

t
1� t

�
= µ�

ug1 � u
g
2 � k ln

s
1� s

�
= µ

h
tuf1 + (1� t)uf2

i
� [sug1 + (1� s)u

g
2 ]

�k (t ln t + (1� t) ln(1� t)� s ln s � (1� s) ln s)
= µ(t � s)



Implies

h
tuf1 + (1� t)uf2

i
� [sug1 + (1� s)u

g
2 ]

�k (t ln t � (1� t) ln(1� t) + s ln s + (1� s) ln s)
=

h
uf1 � uf2 � k (ln t � ln(1� t))

i
(t � s)

s
h
uf1 � ug1 � k (ln t + ln s)

i
+

(1� s)
h
uf2 � ug2 � k (ln(1� t) + ln(1� s))

i
= 0

)
h
uf1 � ug1 � k (ln t � ln s)

i
=

h
uf2 � ug2 � k (ln(1� t)� ln(1� s))

i
= 0



Implies

uf1 � u
g
1

ln t � ln s =
uf2 � u

g
2

ln(1� t)� ln(1� s) = k

� This tells us
1

u fm�u
g
m

ln tm�ln sm is a constant
2 Posterior beliefs do not depend on priors

� Both of these results are general



The Linear Quadratic Gaussian Case

� One case in which this problem becomes more tractable is if
the input and output signal are both normal

� The entropy of a normal variable X � N(µ, σ2x ) is given by

H(Y ) = ln(2πeσ2x )

� If Y and X are both normal, then

H(Y jX ) =
Z
x
f (x)

Z
y
f (y jx) ln(y jx)d(y)d(x)

� As y jx is distributed normally with variance (1� ρ2)σ2y , this
becomes

H(Y jX ) =
Z
x
f (x) ln(2πeσ2y jx )d(x)

=
1
2
ln(2πe(1� ρ2)σ2y )



The Linear Quadratic Gaussian Case

� As mutual information is given by

H(Y )�H(Y jX )

= ln(2πeσ2y )�
1
2
ln(2πe(1� ρ2)σ2y )

� In this case, the mutual information is given by
1
2
ln(1� ρ2)

� So information costs depend only on the covariance of the two
signals!

� It turns out that joint normality is optimal if the utility
function is quadratic in the relationship between the objective
and subjective state
� Choice of variance on some normally distributed error term

� However, note that some papers assume normality (this is
bad)



Discrete Choice of Actions

� Outside the linear quadratic case, often the optimal solution
has discrete number of chosen actions

� Even if
� State space is continuous
� Action space is continuous

� See Sims [2006], Matejka [2008]
� Despite the fact that the state of the world is continuous,
prices may jump between a discrete number of values

� Foundation for sticky prices?



Pricing Game

� Sequential pricing game
� One buyer, one seller, one product of uncertain quality
� Seller gets free info on quality, sets price
� Buyer gets free info on price and can obtain costly info on
quality, decides to buy or not



Market Setting

� Once o¤ sales encounter
� One buyer, one seller, one product



Market Setting

� Nature determines quality θ 2 fθL, θHg, in R+

� Prior λ = Pr (θH )



Market Setting

� Seller learns quality, sets price p 2 fpL, pHg, in R+

� Generalizes to many, internalized �rst and fully



Market Setting

� Buyer learns p, forms interim belief βp of high quality

� Based on prior λ (brand) and seller strategies



Market Setting

� Choose information technology π 2 Πβp

� π : fθL, θH g!∆(S), �nite support, S = [0, 1] posterior
beliefs



Market Setting

� Nature determines a posterior belief s 2 [0, 1]
� Posterior belief about product being high quality



Market Setting

� Decides whether to buy or not
� Just a unit of the good



Market Setting

� Standard utility and pro�t functions (risk neutral EU)
� u 2 R+ is outside option, K 2 R+ is Shannon cost



Buyer�s Attention

� Shannon cost for information technology π, cost κ, and
interim beliefs βp

K
�

π, κ, βp

�
=

κ ∑
s2S (π)

π (s) (s ln (s) + (1� s) ln (1� s))

�κ
�

βp ln
�

βp

�
+
�
1� βp

�
ln
�
1� βp

��



Equilibrium

� Only two mixed strategy PBE w/ rational inattention:
� Always exists �Pooling low�

� High quality sellers charge a low price with probability 1
� Low quality sellers charge a low price with probability 1
� Strategic ignorance: Buyers never attend, strong beliefs

� Always exists �Mimic high�
� High quality sellers charge a high price with probability 1
� Low quality sellers charge a high price with probability

η 2 [0, 1] (mimicking)
� Buyers typically attend at high prices



Theorem
For every cost κ, there exists an equilibrium (�mimic high�) where
high quality sellers price high with probability 1 and low quality
sellers price high with a unique probability η 2 [0, 1].

� Why unique mimicking η?

� When η 2 (0, 1), need low quality seller indi¤erence:

d θL
pH � pH = pL ) d θL

pH =
pL
pH

where d θL
pH is conditional demand

� As η increases, d θL
pH strictly decreases, so single crossing with

pL
pH
if any

� Why is d θL
pH strictly decreasing in η?



� Threshold posterior for each action: s0pH (not buy at pH ) and
s1pH (buy at pH )

ln

 
s1pH
s0pH

!
=

(θH � pH )� u
κ

ln

 
1� s1pH
1� s0pH

!
=

(θL � pH )� u
κ

� Key: Thresholds do not depend on beliefs
� Property of rational inattention



� Let βpH be the prior probability that the good is of high
quality given that it is of high price

� By Bayes Rule

s1pH =
(1� βpH )d

θL
pH

(1� βpH )d
θL
pH + βpH d

θH
pH

s0pH =
(1� βpH )(1� d

θL
pH )

(1� βpH )(1� d
θL
pH ) + βpH (1� d

θH
pH )

d θL
pH =

�
1�s1pH
s1pH�s

0
pH

��
βpH � s

0
pH

�
�
1� βpH

�
� Because thresholds do not depend on beliefs, conditional
demand is
� Strictly increasing in interim beliefs βpH
� So strictly decreasing in mimicking η



� What is the unique value of η when η 2 (0, 1)?

η =
λ

1� λ

�
1� s0pH

� �
1� s1pH

�
s0pH
�
1� s1pH

�
+ pL

pH

�
s1pH � s0pH

�
� As κ ! 0, η ! 0

� As κ ! ∞, η !?
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