Search and Satisficing

Andrew Caplin, Mark Dean and Daniel Martin

ECON 1820 - Brown University - Spring 2015

Experimental Design

- We want to see if satisficing can explain behavior when people are not behaving like maximizers
- Experimental design has two aims
 - Identify enviroment in which people are not maximizers
 - Test satisficing model as an explanation for these mistakes
- Two design challenges
 - Find a set of choice objects for which 'choice quality' is obvious and subjects do not always choose best option
 - Find a way of eliciting 'choice process data'
- We first test behavior in a standard choice task, then add choice process

• Subjects choose between 'sums'

four plus eight minus four

- Value of option is the value of the sum
- 'Full information' ranking obvious, but uncovering value takes effort
- 6 treatments
 - 2 x complexity (3 and 7 operations)
 - 3 x choice set size (10, 20 and 40 options)
- No time limit

Size 10, Complexity 3

Round	Current selection:	
2 of 30	four plus eight minus four	
Choose one:		
0	Zero	
0	three plus five minus seven	
0	four plus two plus zero	
0	four plus three minus six	
R	four plus eight minus four	
120 L	three minus three plus one	
0	five plus one minus one	
0	eight plus two minus five	
0	three plus six minus five	
0	four minus two minus one	
0	five plus five minus one	

Size 20, Complexity 7

\bigcirc	Zero
\bigcirc	seven minus four minus two minus four minus two plus eleven minus four
\bigcirc	six plus five minus eight plus two minus nine plus one plus four
\bigcirc	seven minus two minus four plus three plus four minus three minus three
\bigcirc	seven plus five minus two minus two minus three plus zero minus two
\bigcirc	six plus seven plus six minus two minus six minus eight plus four
\bigcirc	six plus two plus five minus four minus two minus seven plus three
\bigcirc	six minus four minus one minus one plus five plus three minus six
٥	two plus six plus seven minus two minus four minus two plus zero
\bigcirc	two minus three minus five plus nine minus one plus five minus three
\bigcirc	three plus zero plus two plus zero plus one minus three minus one
\bigcirc	four plus three plus zero minus two plus three plus four minus ten
\bigcirc	seven plus two plus seven minus seven plus three minus two minus two
\bigcirc	three plus three minus two plus zero plus zero minus four plus five
\bigcirc	two minus two plus zero plus nine minus two minus one minus one
\bigcirc	three plus four minus three plus three minus four plus three minus four
\bigcirc	three plus five plus seven plus five minus two minus seven minus ten
\bigcirc	three plus six minus eight plus one plus two minus two plus zero
\bigcirc	three plus five plus zero plus four plus three minus four minus two
\bigcirc	eight minus one plus one minus four minus four minus five plus six
\bigcirc	four minus five plus four minus one minus four plus zero plus four

Finished

Results Failure rates (%) (22 subjects, 657 choices)

Failure rate			
	Complexity		
Set size	3	7	
10	7%	24%	
20	22%	56%	
40	29%	65%	

Results Average Loss (\$)

Average Loss (\$)			
	Complexity		
Set size	3	7	
10	0.41	1.69	
20	1.10	4.00	
40	2.30	7.12	

- In this environment, people do not choose the best option
- Choice does not imply revealed preference
- Can behavior be explained by search and satisficing model?
- Do these models resurrect the concept of revealed preference?

Eliciting Choice Process Data

- 1 Allow subjects to select any alternative at any time
 - Can change selection as often as they like
- 2 Choice will be recorded at a random time between 0 and 120 seconds unknown to subject
 - Incentivizes subjects to always keep selected current best alternative
 - Treat the sequence of selections as choice process data
- 3 Round can end in two ways
 - After 120 seconds has elapsed
 - When subject presses the 'finish' button
 - We discard any rounds in which subjects do not press 'finish'

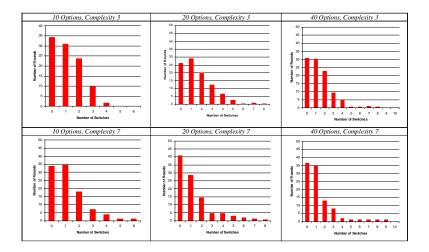
Stage 1: Selection

Round 2 of 30	Current selection: four plus eight minus four			
Choose one:				
0	zero			
0	three plus five minus seven			
0	four plus two plus zero			
0	four plus three minus six			
R	four plus eight minus four			
	three minus three plus one			
0	five plus one minus one			
0	eight plus two minus five			
0	three plus six minus five	×.		
0	four minus two minus one			
0	five plus five minus one			

Finished

Stage 2: Choice Recorded

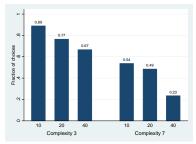
Choice Recorded

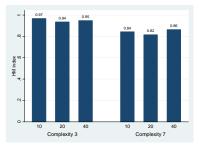

In this round, your choice was recorded after 9 seconds. At that time, you had selected:

four plus four minus six

Next

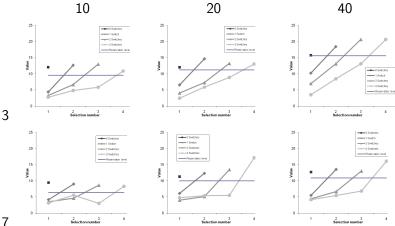
Do We Get Richer Data from Choice Process Methodology?


978 Rounds, 76 Subjects


- Subjects must always switch to higher-valued objects (Condition 1)
- Graph the fraction of switches that satisfy condition 1
- Compare to the fraction of choices that satisfy 'standard' revealed preference

Traditional vs ABS Revealed Preference

Traditional



ABS

- Broadly speaking, subjects are searching sequentially
- Are they Satisficers?
- Can we find a utility level u^* such that they stop search if and only if they encounter a utility above u^* ?

Satisficing Behavior a la Simon [1955]

- Choice process data allows observation of subjects
 - Stopping search
 - Continuing to search
- Allows us to estimate reservation levels
- Assume that reservation level is calculated with some noise at each switch
- Can estimate reservation levels for each treatment using maximum likelihood

Estimated Reservation Levels

	Complexity				
Set size	3		size 3 7		7
10	9.54	(0.20)	6.36	(0.13)	
20	11.18	(0.12)	9.95	(0.10)	
40	15.54	(0.11)	10.84	(0.10)	

Estimating Reservation Levels

- Reservation levels decrease with complexity
 - As predicted by theory
- Increase with choice set size
 - Not predicted by theory