

$$
\begin{aligned}
& \text { - Objective states of the world } \\
& \text { - e.g. Demand could be 'good', 'medium' or 'bad' } \\
& \text { - Decision maker chooses an action } \\
& \text { - e.g. Set price to be high, average, or low } \\
& \text { - Gross payoff depends on action and state } \\
& \text { - e.g. Quantity sold depends on price and demand } \\
& \text { - Decision maker get to learn something about the state before } \\
& \text { choosing action } \\
& \text { - e.g. Could do market research, focus groups, etc. }
\end{aligned}
$$

\sim
$\stackrel{\infty}{\odot}$
$\stackrel{\sim}{0}$

$$
\begin{aligned}
& \text { - The specifics of the process of information acquisition may be } \\
& \text { very complex } \\
& \text { - We model the choice of information in an abstract way } \\
& \text { - The decision maker chooses an information structure } \\
& \text { - Set of signals to receive } \\
& \text { - Throbability of receiving each signal in each state of the world } \\
& \text { - Value of the action depends on the state of the world } \\
& \text { - More informative information structures are more costly, but } \\
& \text { lead to better decisions } \\
& \text { - Sets up a trade off }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Better information will lead to better choices } \\
& \text { - But will cost more } \\
& \text { - Time, effort, money etc } \\
& \text { - How to decide what information structure to व } \\
& \text { - Trade off } \\
& \text { - Benefit of information (easy to measure) } \\
& \text { - Assume that this trade off is done optimally }
\end{aligned}
$$

- $\Omega=\left\{\omega_{1}, \ldots . \omega_{M}\right\}$: States of the world (number of balls,
quality of the car, etc)
- with prior probabilities μ
- Information structure defined by:
- Set of signals: $\Gamma(\pi)$
- Probability of receiving each signal γ from each state
$\quad \omega: \pi(\gamma \mid \omega)$
- In previous example

Describing an Information Structure

$$
\begin{aligned}
& \text { The Value of An Information Structure } \\
& \text { - What is the value of an information structure? } \\
& \text { - In the end you will have to choose an action } \\
& \text { - Defined by the outcome it gives in each state of the world } \\
& \text { - In previous example, could choose three actions } \\
& \text { - set price } H, A \text { or } L \\
& \text { - The following table could describe the profits each price gives } \\
& \text { at each demand level } \\
& \qquad \begin{array}{|l|l|l|}
\hline \text { State } & \text { Price } & \text { H } \\
\hline \text { G } & 10 & \text { L } \\
\hline \text { M } & 1 & 1 \\
\hline \text { B } & -10 & -3 \\
\hline
\end{array} \\
& \qquad \begin{array}{|l|l|}
\hline
\end{array} \\
& \text { - Let } u(a(\omega)) \text { be the utility (profit) that action a gives in state } \\
& \omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Value of An Information Structure } \\
& \text { - What would you choose if you gathered no information? } \\
& \text { - i.e. if you had your prior beliefs } \\
& \text { - Use } \mu \text { to describe the prior } \\
& \qquad \mu(G)=\frac{1}{6}, \mu(M)=\frac{1}{2}, \mu(B)=\frac{1}{3} \\
& \text { - Calculate the expected utility for each act } \\
& \frac{1}{6} u(H(G))+\frac{1}{2} u(H(M))+\frac{1}{3} u\left((H(B))=\frac{-7}{6}\right. \\
& \frac{1}{6} u(A(G))+\frac{1}{2} u(A(M))+\frac{1}{3} u\left((A(B))=\frac{1}{2}\right. \\
& \frac{1}{6} u(L(G))+\frac{1}{2} u(L(M))+\frac{1}{3} u\left((L(B))=\frac{1}{3}\right. \\
& \text { - Choose } A \\
& \text { - Get utility } \frac{1}{2}
\end{aligned}
$$

- Value of this information structure is $\frac{11}{6}$

\square

The Choice of Information Structure

- Can think of it as how much we learn from result of experiment - i.e. actually determining what x is
 Kdoızuヨ иоииечS

Shannon Entropy

 - Say we want our measure of information to have the following features - Depends only on the probability distribution - Maximized at a uniform probability distribution - Unaffected by adding zero probability state - Additive

- $H\left(\left\{p_{1} \ldots P_{M}\right\}\right)=H\left(\left\{p_{1} \ldots P_{M}, 0\right\}\right)$
- Say we want our measure of information to have the following
features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- $H\left(\left\{p_{1}\right.\right.$
> - Say we want our measure of information to have the following

Justification for Shannon Entropy

- There is no equilibrium in which low quality firm charges p_{L}
and high quality firm charges p_{H}
- Why?
- If this were the case, the consumer would be completely
inattentive with probability 1 at both prices
- Price conveys all information
- Incentive for the low quality firm to cheat and charge the high
price
- Would sell with probability 1

Equilibrium
Equilibrium

un!̣q!!!nb

Equilibrium

Equilibrium

$$
\begin{aligned}
& \text { - What is the unique value of } \eta \text { when } \eta \in(0,1) \text { ? } \\
& \qquad \eta=\frac{\lambda}{1-\lambda} \frac{\left(1-\gamma_{P_{H}}^{0}\right)\left(1-\gamma_{P_{H}}^{1}\right)}{\left(1-\gamma_{P H}^{1}\right)+\frac{p_{L}}{P_{H}}\left(\gamma_{P_{H}}-\gamma_{P_{H}}^{0}\right)} \\
& \text { - We can use a model of rational inattention to solve form } \\
& \text { - Consumer demand } \\
& \text { - Firm pricing strategies } \\
& \text { change with model to make predictions about how these of the model } \\
& \text { - E.g as } \kappa \rightarrow 0, \eta \rightarrow 0
\end{aligned}
$$

