Rational Inattention Lecture 2

Mark Dean

Behavioral Economics G6943
Fall 2016

Rational Inattention and Shannon Information Costs

- We have so far considered what we can say when we are agnostic about information costs
- We now move consider behavior under a specific assumed cost for information
- Based on the concept of Shannon Entropy
- Extremely popular in the applied literature
- Consider this the 'Cobb Douglas' case to last week's 'revealed preference' treatment
- Long history of research in information theory
- Quite a lot is known about how these costs behave
- Cover and Thomas is a great resource

Shannon Entropy

- Shannon Entropy is a measure of how much 'missing information' there is in a probability distribution
- In other words - how much we do not know, or how much we would learn from resolving the uncertainty
- For a random variable X that takes the value x_{i} with probability $p\left(x_{i}\right)$ for $i=1 \ldots n$, defined as

$$
\begin{aligned}
H(X) & =E\left(-\ln \left(p\left(x_{i}\right)\right)\right. \\
& =-\sum_{i} p\left(x_{i}\right) \ln \left(p_{i}\right)
\end{aligned}
$$

Shannon Entropy

- Can think of it as how much we learn from result of experiment

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- $H(X)=H(p)$

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- $\max _{p \in \Delta^{M}} H(p)=H\left(\left\{\frac{1}{M}, \frac{1}{M}, \ldots, \frac{1}{M}\right\}\right)$

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- $H\left(\left\{p_{1} \ldots p_{M}\right\}\right)=H\left(\left\{p_{1} \ldots p_{M}, 0\right\}\right)$

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
- $H(X, Y)=H(X)+\sum_{x} p(x) H(Y \mid x)$
- How much you learn from observing X, plus how much you additionally learn from observing Y
- Implies that the entropy of two independent variables is just $H(X)+H(Y)$
- 'Constant returns to scale' assumption
- (Most 'controversial' - other entropies relax this assumption)

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
- Then Entropy must be of the form (Khinchin 1957)

$$
H(X)=-\sum_{i} p\left(x_{i}\right) \ln \left(p_{i}\right)
$$

Entropy and Information Costs

- Related to the notion of entropy is the notion of Mutual Information

$$
I(X, Y)=\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

- Measure of how much information one variable tells you about another
- Note that $I(X, Y)=0$ if X and Y are independent

Entropy and Information Costs

- Note also that mutual information can be rewritten in the following way

$$
\begin{aligned}
I(X, Y) & =\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =\sum_{x} \sum_{y} p(x, y) \log \frac{p(x \mid y)}{p(x)} \\
& =\sum_{y} \sum_{x} p(x, y) \ln P(x \mid y)-\sum_{x} \sum_{y} p(x, y) \ln p(x) \\
& =\sum_{y} p(y) \sum_{x} p(x \mid y) \ln P(x \mid y)-\sum_{y} p(x) \ln p(x) \\
& =H(X)-E(H(X \mid Y))
\end{aligned}
$$

- Difference between entropy of X and the expected entropy of X once Y is known

Mutual Information and Information Costs

- Mutual Information between prior and posteriors often used to model information costs

$$
\begin{aligned}
K(\mu, \pi) & =\lambda(H(\mu)-E(H(\gamma)) \\
& =\lambda\binom{\sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) \sum_{\Omega} \gamma(\omega) \ln \gamma(\omega)}{-\sum_{\Omega} \mu(\omega) \ln \mu(\omega)}
\end{aligned}
$$

- For convenience use γ to refer to the posterior beliefs generated by signal γ

Mutual Information and Information Costs

- Can be justified by information theory
- Say you are going to observe n repetitions of the state Ω (let ω^{n} be a typical element)
- You are allowed to send a message consisting of $n R$ bits (R is the rate)
- Decoded in order to generate n repetitions of the signal space Γ (let γ^{n} be a typical element)
- Define $d(\omega, \gamma)$ be the loss associated with receiving signal γ in state ω, and $\hat{d}\left(\omega^{n}, \gamma^{n}\right)=\frac{1}{n} \sum d\left(\omega_{i}^{n}, \gamma_{i}^{n}\right)$

Mutual Information and Information Costs

- Rate Distortion Theorem: Let $R(D)$ be the minimal rate needed to generate loss D as $n \rightarrow \infty$, then

$$
R(D)=\min _{\pi \in \Pi} I(\Omega, \Gamma) \text { s.t. } \sum_{(\gamma, \omega)} \mu(x) \pi(\gamma \mid x) d(\omega, \gamma) \leq D
$$

- Implies (assuming strict monotonicity)

$$
\min \sum_{(\gamma, \omega)} \mu(x) \pi(\gamma \mid x) d(\omega, \gamma) \text { s.t. } I(\Omega, \Gamma) \leq R(D)
$$

- is equivalent to

$$
\min \sum_{(\gamma, \omega)} \mu(x) \pi(\gamma \mid x) d(\omega, \gamma) \text { s.t. } R \leq R(D)
$$

- See Cover and Thomas Chapter 10.

Shannon Entropy

- Key feature: Entropy is strictly concave
- So negative of entropy is strictly convex
- Say we choose a signal structure with two posteriors γ and γ^{\prime}
- It must be that

$$
P(\gamma) \gamma+P\left(\gamma^{\prime}\right) \gamma^{\prime}=\mu
$$

- so

$$
\begin{aligned}
P(\gamma) H(\gamma)+P\left(\gamma^{\prime}\right) H\left(\gamma^{\prime}\right) & <H\left(P(\gamma) \gamma+p\left(\gamma^{\prime}\right) \gamma^{\prime}\right) \\
& =H(\mu)
\end{aligned}
$$

- So the cost of 'learning something' is always positive

Solving Rational Inattention Models

- Solving the Shannon model can be difficult analytically
- Though easier than many other models
- General approach - ignore choice of information structure, instead focus on joint distribution of choice variable and state
- i.e. choose state dependent stochastic choice directly
- Can do this because optimal strategy will always be 'well behaved'
- Each action taken in at most one state
- Example (Matejka and McKay 2015) - continuous state space, finite action space
- We will talk about analytical approaches
- Alternative, algorithmic approaches
- e.g. Blahut-Arimotio algorithm
- See Cover and Thomas (page 191)

Solving Rational Inattention Models

- \mathcal{P} set of all state contingent stochastic choice functions for some state space Ω and set of acts A
- Remember $P(a \mid \omega)$ is the probability of choosing a in state ω
- Remember that, for $P \in \mathcal{P}$, the mutual information between choices a and objective state ω is given by

$$
I(A, \Omega)=H(A)-H(A \mid \Omega)
$$

Solving Rational Inattention Models

- Decision problem of agent is to choose $P \in \mathcal{P}$ to maximize

$$
\begin{aligned}
& \sum_{a \in A} \int_{\omega} u(a(\omega)) P(a \mid \omega) \mu(d \omega) \\
& -\lambda\left[\sum_{a \in A} \int_{\omega} P(a \mid \omega) \ln P(a \mid \omega) \mu(d \omega)+\sum_{a \in A} P(a) \ln P(a)\right]
\end{aligned}
$$

- Subject to

$$
\sum_{a \in A} P(a \mid \omega)=1 \text { Almost surely }
$$

- Where $P(a)$ is the unconditional probability of choosing a
- Note another constraint which we will ignore for now

$$
P(a \mid \omega) \geq 0 \forall a, \omega
$$

The Lagrangian Function

$$
\begin{aligned}
& \sum_{a \in A} \int_{\omega} u(a(\omega)) P(a \mid \omega) \mu(d \omega) \\
& -\lambda\left[\sum_{a \in A} \int_{\omega} P(a \mid \omega) \ln P(a \mid \omega) \mu(d \omega)+\sum_{a \in A} P(a) \ln P(a)\right] \\
& -\int_{\omega} \rho(\omega)\left[\sum_{a \in A} P(a \mid \omega)-1\right] \mu(d \omega)
\end{aligned}
$$

- $\rho(\omega)$ Lagrangian multiplier on the condition that $\sum_{a \in A} P(a \mid \omega)=1$
- FOC WRT $P(a \mid \omega)$ (assuming >0)

$$
u(a(\omega))-\rho(\omega)+\lambda[\ln P(a)+1-\ln P(a \mid \omega)-1]=0
$$

- Note that this is a convex problem

Solution

- FOC WRT $P(a \mid \omega)$ (assuming >0)

$$
u(a(\omega))-\rho(\omega)+\lambda[\ln P(a)+1-\ln P(a \mid \omega)-1]=0
$$

- Which gives

$$
P(a \mid \omega)=P(a) \exp ^{\frac{\mu(a(\omega))-\rho(\omega)}{\lambda}}
$$

- Plug this into

$$
\begin{aligned}
\sum_{a^{\prime} \in A} P\left(a^{\prime} \mid \omega\right) & =1 \\
& \Rightarrow \exp ^{\frac{\rho(\omega)}{\lambda}}=\sum_{a^{\prime} \in A} P\left(a^{\prime}\right) \exp ^{\frac{u\left(a^{\prime}(\omega)\right)}{\lambda}}
\end{aligned}
$$

- Which in turn gives...

Comments

$$
P(a \mid \omega)=\frac{P(a) \exp ^{\frac{u(a(\omega))}{\lambda}}}{\sum_{c \in A} P(c) \exp ^{\frac{u(c(\omega))}{\lambda}}}
$$

- Similar in form to logistic random choice
- If alternatives are ex ante identical, this is logistic choice
- Otherwise choice probabilities are 'warped' by $P(a)$ - which contains information on the prior value of each option
- As costs go to zero, deterministically pick best option in that state
- As costs go to infinity, deterministically pick the best option ex ante

Comments

- The MM conditions ignore the constraint

$$
P(a \mid \omega) \geq 0 \forall a, \omega
$$

- Need to know which acts will be chosen with positive probability
- Typically there will be many acts not chosen at the optimum (Matejka and Sims 2010)
- There will be many solutions to the necessary conditions
- Ideally, would like necessary and sufficient conditions

Necessary and Sufficient Conditions

- Let $z(a(\omega))$ be 'normalized utilities'

$$
z(a, \omega)=\exp \left\{\frac{u(a, \omega)}{\lambda}\right\}
$$

- Note that the MM conditions are

$$
P(a \mid \omega)=\frac{P(a) z(a, \omega)}{\sum_{c \in A} z(c, \omega)}
$$

Necessary and Sufficient Conditions

Theorem

P is consistent with rational inattention with mutual information costs if and only if

$$
\begin{aligned}
& \sum_{\omega}\left[\frac{\mu(\omega) z(a, \omega)}{\sum_{c \in A} P(c) z(c, \omega)}\right] \leq 1 \text { all } a \in A \\
& \sum_{\omega}\left[\frac{\mu(\omega) z(a, \omega)}{\sum_{c \in A} P(c) z(c, \omega)}\right]=1 \text { all a s.t. } P(a)>0
\end{aligned}
$$

and

$$
P(a \mid \omega)=\frac{P(a) z(a, \omega)}{\sum_{c \in A} P(c) z(c, \omega)}
$$

(1) Identify correct unconditional choice probabilities

- Equality condition for chosen actions
- Check inequality condition for unchosen actions
(2) Read off conditional choice probabilities using MM conditions

Example: Finding the Good Act

- Choose from a set of goods $A=\left\{a_{1}, \ldots, a_{N}\right\}$
- Only one of these goods is of high quality
- u_{h} utility of the high quality good
- u_{l} utility of the low quality good
- μ_{i} prior probability that good i is the high quality good
- WLOG assume $\mu_{1} \geq \mu_{2} \ldots \geq \mu_{N}$
- Common set up in many psychology experiments

Solution

- Cutoff strategy in prior probabilities: Exists c such that
- $\mu_{i}>c \Rightarrow i$ chosen with positive probability
- $\mu_{i}<c \Rightarrow i$ never chosen and nothing is learned about their quality
- Endogenously form a 'consideration set'
- Let $\delta=\frac{\exp \left(\frac{u_{h}}{\lambda}\right)}{\exp \left(\frac{U}{\lambda}\right)}-1$: 'additional' utility from high act
- Search the best K alternatives, where K solves

$$
\mu_{K}>\frac{\sum_{k=1}^{K} \mu_{k}}{K+\delta} \geq \mu_{K+1}
$$

Consideration Set Formation

- Can use equality constraints to solve for unconditional choice probabilities

$$
P\left(a_{i}\right)=\frac{\mu\left(\omega_{i}\right)(K+\delta)-\sum_{k=1}^{K} \mu\left(\omega_{k}\right)}{\delta \sum_{k=1}^{K} \mu\left(\omega_{k}\right)}
$$

- MM conditions to solve for conditional choice probabilities

$$
P\left(b \mid b=u_{h}\right)=\frac{P(b) \delta}{\sum_{c \in A} P(c)}
$$

Choice Probabilities - Example

- Exponential priors
- $u_{h}=1, u_{l}=0$

Choice Probabilities - Example

Importance of Sufficient Conditions

- The MM necessary conditions could be solved for many possible 'consideration sets'
- Choosing any option with probability 1 will solve the necessary conditions
- For any set C with worst alternative $\mu_{\bar{C}}$ there is a solution to the necessary conditions if

$$
\frac{\mu_{\tau}}{\sum_{k \in C} \mu_{k}}>\frac{1}{|C|+\delta} .
$$

- Do no reference unchosen actions
- Do not determine whether higher utility could be obtained with a different consideration sets
- This is the advantage of the sufficient conditions

The Linear Quadratic Gaussian Case

- One case in which this problem becomes more tractable is if the input and output signal are both normal
- The entropy of a normal variable $X \sim N\left(\mu, \sigma_{x}^{2}\right)$ is given by

$$
H(Y)=\frac{1}{2} \ln \left(2 \pi e \sigma_{x}^{2}\right)
$$

- If Y and X are both normal, then

$$
E(H(Y \mid X))=\int_{x} f(x) \int_{y} f(y \mid x) \ln (y \mid x) d(y) d(x)
$$

- As $y \mid x$ is distributed normally with variance $\left(1-\rho^{2}\right) \sigma_{y}^{2}$, this becomes

$$
\begin{aligned}
E(H(Y \mid X)) & =\int_{x} f(x) \frac{1}{2} \ln \left(2 \pi e \sigma_{y \mid x}^{2}\right) d(x) \\
& =\frac{1}{2} \ln \left(2 \pi e\left(1-\rho^{2}\right) \sigma_{y}^{2}\right)
\end{aligned}
$$

The Linear Quadratic Gaussian Case

- As mutual information is given by

$$
\begin{aligned}
& H(Y)-E(H(Y \mid X)) \\
= & \frac{1}{2} \ln \left(2 \pi e \sigma_{y}^{2}\right)-\frac{1}{2} \ln \left(2 \pi e\left(1-\rho^{2}\right) \sigma_{y}^{2}\right)
\end{aligned}
$$

- In this case, the mutual information is given by

$$
\frac{1}{2} \ln \left(1-\rho^{2}\right)
$$

- So information costs depend only on the covariance of the two signals!
- It turns out that joint normality is optimal if the utility function is quadratic in the relationship between the objective and subjective state
- Choice of variance on some normally distributed error term
- However, note that some papers assume normality (this is bad)

A Posterior Based Approach

- Rather than think of the problem as choosing posteriors rather than choosing state dependent stochastic choice
- Can rewrite the objective function as

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma(\pi)} P(\gamma) W(\gamma)-\lambda\left[\sum_{\gamma \in \Gamma(\pi)} P(\gamma) H(\gamma)+\lambda H(\mu)\right] \\
& \sum_{\gamma \in \Gamma(\pi)} P(\gamma)(W(\gamma)-\lambda H(\gamma))+\lambda H(\mu)
\end{aligned}
$$

- Where
- $P(\gamma)$ is the unconditional probability of posterior γ
- $W(\gamma)=\sum_{\omega \in \Omega} \gamma(\omega) u\left(a^{*}(\omega)\right)$ be the expected utility of a^{*}, optimal choice at posterior γ
- $H(\gamma)$ is the entropy associated with γ

Implications

- For each posterior we can define the net utility

$$
N(\gamma)=W(\gamma)-\lambda H(\gamma)
$$

- Optimal strategy: Choose posteriors to maximize the weighted average of $N(\gamma)$, subject to

$$
\sum_{\gamma \in \Gamma(\pi)} P(\gamma) \gamma=\mu
$$

- If same number of posteriors as states this pins down $P(\gamma)$ once posteriors have been chosen

An Example of the Posterior Based Approach

- Example: 2 states, 2 actions

Action	Payoff in state 1	Payoff in state 2
\mathbf{f}^{1}	x	0
\mathbf{f}^{2}	0	x

Constructing the Net Utility Function

Value as a Weighted Average of Net Utility

Finding the Optimal Strategy

- Optimal posteriors identified by hyperplane that supports the set of feasible net utilities.

Theorem
Given decision problem $(\mu, A) \in \Gamma \times \mathcal{F}$ a set of posteriors are rationally inattentive if and only if:
(1) Invariant Likelihood Ratio (ILR) Equations for Chosen Acts: given $a, b \in B$, and $\omega \in \Omega$,

$$
\frac{\gamma^{a}(\omega)}{z(a(\omega))}=\frac{\gamma^{b}(\omega)}{z(b(\omega))}
$$

(2) Likelihood Ratio Inequalities for Unchosen Acts: given act a chosen with positive probability and $b \in A$,

$$
\sum_{\omega \in \Omega}\left[\frac{\gamma^{a}(\omega)}{z(a(\omega))}\right] z(b(\omega)) \leq 1
$$

Behavioral Properties

- Locally Invariant Posteriors
- Invariant Likelihood Ratio and Response to Incentives
- Symmetry

Behavioral Properties

- Locally Invariant Posteriors
- Invariant Likelihood Ratio and Response to Incentives
- Symmetry

Locally Invariant Posterior

- Example: 2 states, 2 actions

Action	Payoff in state 1	Payoff in state 2
\mathbf{f}^{1}	x	0
\mathbf{f}^{2}	0	x

Behavior at 0.5 Prior

Behavior for prior<a

Behavior for prior $>\mathrm{a}$

Same Posteriors as for 0.5 prior

No Information Gathered

Locally Invariant Posteriors

Theorem (Locally Invariant Posteriors)
If a set of posteriors $\left\{\gamma^{a}\right\}_{a \in A}$ are optimal for decision problem
$\{\mu, A\}$ and are also feasible for $\left\{\mu^{\prime}, A\right\}$ then they are also optimal
for that decision problem

- Choice probabilities move 'mechanically' with prior to maintain posteriors
- Useful in, for example, models in which consumers are rationally inattentive to quality
- As the prior distribution of quality changes, posterior beliefs do not
- See Martin [2014]

Experiment

Table 1: Experiment					
Decision		Payoffs			
Problem	$\mu(1)$	$U(a(1))$	$U(a(2))$	$U(b(1))$	$U(b(2))$
1	0.50	10	0	0	10
2	0.60	10	0	0	10
3	0.75	10	0	0	10
4	0.85	10	0	0	10

- Two unequally likely states
- Two actions (a and b)
- 23 subjects

Prediction

- Each subject has 'threshold belief'
- Determined by information costs
- If prior is within those beliefs
- Both actions used
- Learning takes place
- Same posteriors always used
- If prior is outside these beliefs
- No learning takes place
- Only one action used

Results

- Distribution of thresholds for 23 subjects

Threshold	$\%$
$[0.5,0.6)$	30
$[0.6,0.75)$	30
$[0.75,0.85)$	26
$[0.85,1]$	13

Results

- Fraction of subjects who gather no information

	μ		
	0.6	0.75	0.85
Threshold below μ	29%	29%	35%
Threshold above μ	0%	0%	0%

- Fraction of subjects who gather statistically insignificant amounts of information

	μ		
	0.6	0.75	0.85
Threshold below μ	71%	35%	50%
Threshold above μ	19%	0%	0%

Results

Results

Results

Further Prior Invariance

- Another implication of Shannon Mutual Information is that one only pays expected information costs
- Mutual information can also be written as

$$
-\sum_{\omega \in \Omega} \mu(\omega) H(A \mid \omega)+H(\Omega)
$$

- It is cheap to be accurate in rare states.
- In fact, accuracy doesn't depend on prior distribution, as we can see from the ILR condition

$$
\frac{\gamma^{a}(\omega)}{z(a(\omega))}=\frac{\gamma^{b}(\omega)}{z(b(\omega))}
$$

Further Prior Invariance

- Does this work out?
- Not always - Shaw and Shaw [1977]
- Have to recognize which of three letters has appeard
- Letter can appear at any of 8 points in a circle
- Each appearance point equally likely

Further Prior Invariance

Further Prior Invariance

- Now make it more likely that letter appears at 'Due North' or 'Due South'
- Changes priors, but not payoffs
- Should not affect behavior

Further Prior Invariance

Behavioral Properties

- Locally Invariant Posteriors
- Invariant Likelihood Ratio and Response to Incentives
- Symmetry

Invariant Likelihood Ratio and Responses to Incentives

- For chosen actions our condition implies

$$
\frac{u(a(\omega))-u(b(\omega))}{\ln \bar{\gamma}^{a}(\omega)-\ln \bar{\gamma}^{b}(\omega)}=\lambda
$$

- Constrains how DM responds to changes in incentives

Invariant Likelihood Ratio - Example

Pable 2: Experiment				
Decision Problem	$u(a(1))$	$u(a(2))$	$u(b(1))$	$u(b(2))$
1	2	0	0	2
2	10	0	0	10
3	20	0	0	20
4	30	0	0	30

2
$\ln \bar{\gamma}^{a}(2)-\ln \bar{\gamma}^{b}(2)$

- One observation pins down λ
- Determines behavior in all other treatments

Invariant Likelihood Ratio - Example

- Observation of choice accuracy for $x=2$ pins down λ

Invariant Likelihood Ratio - Example

- Implies expansion path for all other values of x
- This does not hold in our experimental data

Invariant Likelihood Ratio - An Experimental Test

Fitting the Data

Behavioral Properties

- Locally Invariant Posteriors
- Invariant Likelihood Ratio and Response to Incentives
- Symmetry

Symmetry

- Shannon Mutual Information has the property of symmetry
- Behavior invariant to the labelling of states

$$
\frac{u(a(\omega))-u(b(\omega))}{\ln \bar{\gamma}^{a}(\omega)-\ln \bar{\gamma}^{b}(\omega)}=\lambda
$$

- Optimal beliefs depend only on the relative value of actions in that state
- Implies that there is no concept of 'perceptual distance'

A Simple Example

- N equally likely states of the world $\{1,2 \ldots ., N\}$
- Two actions

	Payoffs	
States	$1, \ldots \frac{N}{2}$	$\frac{N}{2}+1, \ldots, N$
action f	10	0
action g	0	10

- Mutual Information predicts a quantized information structure
- Optimal information structure has 2 signals
- Probability of making correct choice is independent of state

$$
\frac{\exp \left(\frac{u(10)}{\lambda}\right)}{1+\exp \left(\frac{u(10)}{\lambda}\right)}
$$

Predictions for the Simple Problem - Shannon

- Probability of correct choice does not go down near threshold

Predictions for the Simple Problem - Shannon

- Not true of other information structures (e.g. uniform signals)

Symmetry

- Shannon Model makes strong predictions for the simple problem
- Accuracy not affected by closeness to threshold
- In contrast to (e.g.) uniform signals
- Which model is correct?
- It may depend on the perceptual environment
- Test prediction in two different environments

Environment 1 (Balls)

Action	Payoff $\leq \mathbf{5 0}$ Red	Payoff $>\mathbf{5 0}$ Red
\mathbf{f}	10	0
\mathbf{g}	0	10

Environment 2 (Letters)

J	P	P	J	J	L
P	N	K	N	K	M
J	Q	M	O	L	O
O	M	L	N	Q	J
Q	K	J			

Action	Payoff state letter $<\mathbf{N}$	Payoff state letter $\geq \mathbf{N}$
\mathbf{f}	10	0
\mathbf{g}	0	10

Experiment

- 2 treatments
- 'Balls' Experiment
- 23 subjects
- Vary the number of states
- 'Letters' Experiment
- 24 subjects
- Vary the relative frequency of the state letter
- Test whether probability of correct choice is lower nearer the threshold

Balls Experiment

- Probability of correct choice significantly correlated with distance from threshold ($\mathrm{p}<0.001$)

Letters Experiment

- Probability of correct choice does vary between states
- But is not correlated with distance from threshold ($p=0.694$)

Alternative Cost Functions

- So far we have seen three potential failures of the Shannon Cost function
- Prior invariance
- Expansion path
- Lack of percepual distance
- How can we address these shortcomings?

Alternative Cost Functions

- So far we have seen three potential failures of the Shannon Cost function
- Prior invariance
- Expansion path
- Lack of percepual distance
- How can we address these shortcomings?

Prior Invariance

- Shannon implies a lack of response to priors which may be unrealistic
- We could replace costs based on Shannon mutual information with those based on Shannon capacity

$$
C(\Omega, \Gamma)=\max _{\mu \in \Delta(\Omega)} I(\Omega, \Gamma)
$$

- The maximial possible entropies across all prior distributions
- Intuitively, means that it is no longer cheap to be accurate in unlikely states
- See Woodford [2012]

Alternative Cost Functions

- So far we have seen three potential failures of the Shannon Cost function
- Prior invariance
- Expansion path
- Lack of percepual distance
- How can we address these shortcomings?

Expansion Path

- We saw that people were less responsive to information than implied by Shannon
- Shannon Cost function:

$$
K(\pi, \mu)=\lambda\left[-H(\mu)+\sum_{\gamma \in \Gamma(\pi)} P(\gamma) H(\gamma)\right] .
$$

- Posterior- Separable cost functions:

$$
K(\pi, \mu)=\lambda\left[-L(\mu)+\sum_{\gamma \in \Gamma(\pi)} P(\gamma) L(\gamma)\right] .
$$

- where

$$
L_{\{\rho, \lambda\}}(\gamma)=\left\{\begin{array}{c}
-\lambda\left(\sum_{\Omega} \gamma(\omega)\left[\frac{\gamma(\omega)^{1-\rho}}{(\rho-1)(\rho-2)}\right]\right) \text { if } \rho \neq 1 \text { and } \rho \neq 2 \\
-\lambda\left(\sum_{\Omega} \gamma(\omega) \ln \gamma(\omega)\right) \text { if } \rho=1 \\
-\lambda\left(\sum_{\Omega} \gamma(\omega) \frac{\ln \gamma(\omega)}{\gamma(\omega)}\right) \text { if } \rho=2
\end{array}\right.
$$

Response to Incentives: Posterior Separable Cost Functions

Fitting the Data

Alternative Cost Functions

- So far we have seen three potential failures of the Shannon Cost function
- Prior invariance
- Expansion path
- Expansion path
- How can we address these shortcomings?

Perceptual Distance

- One promising approach being developed by Hubert and Woodford
- "Rational Inattention with Sequential Information Sampling"
- Watch this space....

Summary

- Introduced Shannon Mutual Information as a potential cost function
- Popular in the literature
- 'Cobb Douglas' vs 'Revealed Preference'
- Introduced some analytical tools to help solve the Shannon model
- MM - necessary conditions
- Necessary + Sufficient Conditions
- Posterior-based approach
- Shown that the Shannon model can give rise to endogenous consideration set formation
- Discussed the experimental evidence for other behavioral implications
- LIP
- ILP
- Symmetry

