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Rational Inattention and Shannon Information Costs

We have so far considered what we can say when we are
agnostic about information costs

We now move consider behavior under a specific assumed cost
for information

Based on the concept of Shannon Entropy

o Extremely popular in the applied literature
o Consider this the ‘Cobb Douglas’ case to last week's ‘revealed
preference’ treatment

Long history of research in information theory

e Quite a lot is known about how these costs behave
e Cover and Thomas is a great resource



Shannon Entropy

e Shannon Entropy is a measure of how much ‘missing
information’ there is in a probability distribution

e In other words - how much we do not know, or how much we
would learn from resolving the uncertainty

e For a random variable X that takes the value x; with
probability p(x;) for i = 1...n, defined as

H(X) = E(=In(p(x))

= _Zp |n P:



Shannon Entropy
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e Can think of it as how much we learn from result of
experiment



Justification for Shannon Entropy

e Say we want our measure of entropy to have the following
features

e Depends only on the probability distribution
* H(X) =H(p)



Justification for Shannon Entropy

e Say we want our measure of entropy to have the following
features

e Depends only on the probability distribution

e Maximized at a uniform probability distribution

o max,cam H(p) = H ({ﬁ L ﬁ})



Justification for Shannon Entropy

Say we want our measure of entropy to have the following
features

Depends only on the probability distribution
Maximized at a uniform probability distribution

Unaffected by adding zero probability state
o H({p1....pm}) = H({p1....Pm.0})



Justification for Shannon Entropy

Say we want our measure of entropy to have the following
features

Depends only on the probability distribution
Maximized at a uniform probability distribution
Unaffected by adding zero probability state
Additive
e H(X,Y) = H(X) + £, p(x)H(Y]x)
e How much you learn from observing X, plus how much you

additionally learn from observing Y

e Implies that the entropy of two independent variables is just
H(X)+ H(Y)
e ‘Constant returns to scale’ assumption



Justification for Shannon Entropy

Say we want our measure of entropy to have the following
features

Depends only on the probability distribution
Maximized at a uniform probability distribution
Unaffected by adding zero probability state
Additive

Then Entropy must be of the form (Khinchin 1957)

H(X) = — ZP(X/') In(p;)

Note, other entropies are available! e.g. Tsallis

k q
ﬁ(l - Zj:P(Xi) )



Entropy and Information Costs

e Related to the notion of entropy is the notion of Mutual
Information

I(X,Y) =3 p(x.y) '°gm

e Measure of how much information one variable tells you about
another

e Note that /(X,Y) =0 if X and Y are independent



Entropy and Information Costs

e Note also that mutual information can be rewritten in the
following way

I(X,Y) = ) ) p(xy) jog PLY)_

p(x)

= ZZP(W In P(x|y) - Zpry In p(x
= Zp Zp x|y)InP(x]y) — Zp In p(x

= H(X) = E(H(X]Y))

e Difference between entropy of X and the expected entropy of
X once Y is known



Mutual Information and Information Costs

e Mutual Information between prior and posteriors often used to
model information costs

K(p. ) = A(H(p) = E(H(7))

_ Yer(n) (1) La v (w) Iny(w)
A( (@) I (w) )

e For convenience use 7 to refer to the posterior beliefs
generated by signal



Mutual Information and Information Costs

Can be justified by information theory

Say you are going to observe n repetitions of the state Q) (let
w" be a typical element)

You are allowed to send a message consisting of nR bits (R is
the rate)

Decoded in order to generate n repetitions of the signal space
I (let v" be a typical element)

Define d(w, 7v) be the loss associated with receiving signal 7y
in state w, and d(w",7") = 1 ¥ d(w?, ")



Mutual Information and Information Costs

Rate Distortion Theorem: Let R(D) be the minimal rate
needed to generate loss D as n — oo, then

R(D) = min I(Q),T) s Zy (y|x)d(w,y) <D

mell

Implies (assuming strict monotonicity)

min Z u(x)(ylx)d(w,v) st. 1(Q,T) < R(D)

is equivalent to

min E u(x)m(y|x)d(w,y) st. R < R(D)

See Cover and Thomas Chapter 10.



Shannon Entropy

Key feature: Entropy is strictly concave

So negative of entropy is strictly convex

Say we choose a signal structure with two posteriors 7y and 7/
It must be that

P(y)y+P(Y)y = n

SO

P(Y)H(7) +P(Y)H(Y) < H(P()y+p(r)7)
= H(u)

So the cost of ‘learning something’ is always positive



Solving Rational Inattention Models

Solving the Shannon model can be difficult analytically
e Though easier than many other models

General approach - ignore choice of information structure,
instead focus on joint distribution of choice variable and state
e j.e. choose state dependent stochastic choice directly
e Can do this because optimal strategy will always be ‘well
behaved’
e Each action taken in at most one state

Example (Matejka and McKay 2015) - continuous state space,
finite action space

We will talk about analytical approaches

o Alternative, algorithmic approaches
e e.g. Blahut-Arimotio algorithm
e See Cover and Thomas (page 191)



Solving Rational Inattention Models

e P set of all state contingent stochastic choice functions for
some state space () and set of acts A

e Remember P(a|w) is the probability of choosing a in state w

e Remember that, for P € P, the mutual information between
choices a and objective state w is given by

1(A,Q) = H(A) — H(A|Q)



Solving Rational Inattention Models

Decision problem of agent is to choose P € P to maximize

Y. [ u(aw))P(alw)n(dw)

acAvw
Y [2/ P(alw) In P(a|w)p(dw) + Y P(a)In P(a)
acAvwW acA
Subject to

Y P(alw) =1 Almost surely

acA
Where P(a) is the unconditional probability of choosing a

Note another constraint which we will ignore for now

P(alw) >0V a,w



The Lagrangian Function

¥ [ u(a(@)P(alw)n(d)

acA
[Z / alw)In P(alw)u(dw) + ) _ P(a)In P(a)
acA

acA
- [ p@)

Y P(alw) - 1] p(dw)
acA
e p(w) Lagrangian multiplier on the condition that
Yaca P(alw) =1
e FOC WRT P(a|w) (assuming >0)

u(a(w)) —p(w) +AllnP(a) +1—InP(alw) —1] =0

e Note that this is a convex problem



Solution

FOC WRT P(a|w) (assuming >0)

u(a(w)) —p(w) +AllnP(a) +1—InP(alw) —1] =0

Which gives
P(alw) = P(a) exp et
Plug this into
Y P |w) = 1
a'eA
= exp%uj) = 2 P(a’)expw

Which in turn gives...



Comments

P(a) exp o)
u(c(w))

YeeaP(c)exp

Similar in form to logistic random choice

P(alw) =

If alternatives are ex ante identical, this is logistic choice

Otherwise choice probabilities are ‘warped’ by P(a) - which
contains information on the prior value of each option

e Important: note that P(a) is endogenous, not a parameter

As costs go to zero, deterministically pick best option in that
state

As costs go to infinity, deterministically pick the best option
ex ante



Comments

The MM conditions ignore the constraint
P(alw) >0V a,w

Need to know which acts will be chosen with positive
probability

Typically there will be many acts not chosen at the optimum
(Jung et al. 2015)

There will be many solutions to the necessary conditions

Ideally, would like necessary and sufficient conditions



Necessary and Sufficient Conditions

o Let z(a, w) be ‘normalized utilities’

z(a,w) = exp { “(a)'t‘”) }

e Note that the MM conditions are

B P(a)z(a, w)
Plalw) = & Plo)z(c,w)




Necessary and Sufficient Conditions

Theorem
P is consistent with rational inattention with mutual information
costs if and only if

):[ plw)z(aw ))] < lallacA

YiceA 'D(C)Z(
w)z(a.w) = all as a
Z[ZCEAP(c)z( )] = lallast P(a)>0
and
P(a)z(a, w)

P(alw) =

Yeea P(e)z(c,w)

@ ldentify correct unconditional choice probabilities

e Equality condition for chosen actions
e Check inequality condition for unchosen actions

® Read off conditional choice probabilities using MM conditions



Example: Finding the Good Act

e Choose from a set of goods A= {ay,...,an}
e Only one of these goods is of high quality

o uy utility of the high quality good
e u utility of the low quality good
e u; prior probability that good / is the high quality good
o WLOG assume pi; > py.... > Uy

e Common set up in many psychology experiments



Solution

Cutoff strategy in prior probabilities: Exists ¢ such that

e u; > c = i chosen with positive probability
e u; < c = i never chosen and nothing is learned about their
quality

Endogenously form a ‘consideration set’
exp(f)
Let 6 = &

eXP(w)
Search the best K alternatives, where K solves

Yot
P> Sers 2 e

— 1: ‘additional’ utility from high act



Consideration Set Formation

e Can use equality constraints to solve for unconditional choice
probabilities

p(wi) (K +6) = Tp_y plwy)
Yy plwi)

e MM conditions to solve for conditional choice probabilities

P(a;) =




Choice Probabilities - Example

Lambda=1
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e Exponential priors

e up, =1, u=0



Features of the Solution

e ‘Consideration set’ of alternatives chosen with positive
probability

e Mistakes even amongst alternatives in the consideration sets

e Ex ante probability of alternative being good conditional on
being chosen is same for all alternatives



Choice Probabilities - Example
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Importance of Sufficient Conditions

e The MM necessary conditions could be solved for many
possible ‘consideration sets'
e Choosing any option with probability 1 will solve the necessary
conditions
e For any set C with worst alternative ji# there is a solution to
the necessary conditions if

pe o1
Ykechy ~ |C|+9

e Do no reference unchosen actions

e Do not determine whether higher utility could be obtained
with a different consideration sets

e This is the advantage of the sufficient conditions



The Linear Quadratic Gaussian Case

One case in which this problem becomes more tractable is if
the input and output signal are both normal

The entropy of a normal variable X ~ N(u,02) is given by
1
H(Y) = 5 In(2mec?)
If Y and X are both normal, then

E(H(Y1X)) = [ £() [ F(ylx) In(y|x)d(y)d(x)

X y

As y|x is distributed normally with variance (1 — p?)c?, this
becomes

E(H(Y|X)) = /Xf(x);m(zneaix)d(x)

5 In(27Te(1 — p2)05)



The Linear Quadratic Gaussian Case

As mutual information is given by

H(Y) — E(H(Y[X))

1 1
= 3 In(27tec) — 5 In(27te(1 — p*)0?)

In this case, the mutual information is given by
1
ZIn(1—p?
5 In(1—p%)
So information costs depend only on the covariance of the two
signals!
It turns out that joint normality is optimal if the utility

function is quadratic in the relationship between the objective
and subjective state

e Choice of variance on some normally distributed error term

However, note that some papers assume normality (this is
bad)



Set Up

There is another way to approach this problem which possibly
gives more insight

Assume we are choosing @, a (simple) distribution over
posterior beliefs, with Q(7y) the probability of belief -y

We can also work with a generalized cost function
Y Q(VT(Y) = T(n)
T

where T is some strictly convex function

For example, we could replace Shannon entropy with other
types of entropy.

Call this the class of 'posterior separable’ cost functions



Set Up

e One way to gain insight into what is going on is to rewrite the
objective function

;Q(v) [Teajgv(w)U(a,w>] - [; QYT () — T(V)]

= ZQ(fy) [TaXZ’y(w)U(ayw) = T(7)
= ZQ maxN (7)

+ T(n)

e Each v and a has a net utility associated with it
=Y r(w)u(a,w) = [T(y) = T(p)]
0

e Aim is to pick distribution of posteriors which maximizes the
expected value of net utilities subject to

Y. Q)=

~eT (1)



Net Utility

e Consider a simple case with two states and two acts

Action | Payoff in state 1 Payoff in state 2
a 10 0
b 0 10




Net Utility

Net Utility

N(r®) +T(n)
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Optimal Strategy

Net Utility
Net utility of Net utility of
actionb action a
Net utility of
strategy A"
P° 0.4 0.5 Probability of
state 1

e What to find the posteriors which support the highest chord
above the prior

e The solution for every possible prior defined by the lower
epigraph of the concavified net utility function



Finding the Optimal Strategy
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Theorem

Theorem
Given decision problem (y, A) € T x F a set of posteriors are
rationally inattentive if and only if:

® Invariant Likelihood Ratio (ILR) Equations for Chosen
Acts: given a,b € B, and w € (),

YW _ 2w
2(a(@) ~ 2(b(@))

® Likelihood Ratio Inequalities for Unchosen Acts: given
act a chosen with positive probability and b € A,

L L@EZH z(b(w)) < 1.

we)

w
w




Behavioral Properties

e We have necessary and sufficient conditions to characterize
the Shannon model

e But these do not necessarily help us understand the behaviors
that it predicts

e Might be helpful to have a more ‘behavioral’ characterization



Posterior Separability

e Turns out that we can characterize using three behavioral
axioms

e Plus some technical ones that we won't bother with

@ Separability
® Locally Invariant Posteriors

© Invariance Under Compression



Net Utility
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Net Utility
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Separability

e Separability states you can always do this

e For any set of chosen acts and assoctated posteriors

e Can switch out one posterior and replace it with another
posterior

e Changing only the associated act.



Locally Invariant Posterior

e Example: 2 states, 2 actions

Action | Payoff in state 1 Payoff in state 2
fl X 0
£2 0 X




Behavior at 0.5 Prior
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Behavior for prior<a
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Behavior for prior>a
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Same Posteriors as for 0.5 prior
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No Information Gathered
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Locally Invariant Posteriors

e Locally Invariant posteriors: If a set of posteriors {y?},_, are
optimal for decision problem {y, A} and are also feasible for
{#/, A} then they are also optimal for that decision problem

e Choice probabilities move ‘mechanically’ with prior to
maintain posteriors

e Useful in, for example, models in which consumers are
rationally inattentive to quality

o As the prior distribution of quality changes, posterior beliefs do
not
e See Martin [2014]



Invariance Under Compression

e The Shannon model is clearly ‘special’ in many ways in the
class of UPS model

e The literature has noted many properties

e Symmetry
e Separability of Orthogonal Decisions
e Lack of Complementarities

o All of these properties can be captured in a single axiom

e |nvariance Under Compression



Invariance Under Compression - An Example

o Consider decision problem (i)

State w1 | wo
Prior Prob 05105
Payoff Action A | 10 | 0

Payoff Action B | 0 10

e And now decision problem (/i) which splits w»

State wi | wy | w3
Prior Prob 05102103
Payoff Action A | 10 | O 0

Payoff Action B | 0 10 | 10




Invariance Under Compression - An Example

e How should behavior change between the two decision
problems?

e In principal, many things could happen

e Could be harder to learn about two states that one, so less
accurate in (if) than (i)
e Could be easier to learn about two states that one, so more
accurate in (i) than (i)
e Shannon model says that behavior should not change
o Pi(alwz) = Pji(alw2) = Pji(alws)



Behavioral Characterization

Invariance under Compression formalizes this
Defines the concept of a 'basic’ decision problem

e No two states have the same payoff for all acts

Every decision problem has associated basic forms
Choice behavior the same when moving between decision
problems and their basic forms

Corrolaries

e Behavior the same in every state which is payoff equivalent
e Moving prior probabilities between payoff equivalent states
does not change behavior



Experimental Tests

e Locally Invariant Posteriors
e Invariant Likelihood Ratio and Response to Incentives

e Invariance Under Compression



Experimental Tests

e Locally Invariant Posteriors
e Invariant Likelihood Ratio and Response to Incentives

e Invariance Under Compression



Experiment

Table 1: Experiment
Decision Payoffs
Problem | u(1) | U(a(1)) | U(a(2)) || U(b(1)) | U(b(2))
1 0.50 10 0 0 10
2 0.60 10 0 0 10
3 0.75 10 0 0 10
4 0.85 10 0 0 10

e Two unequally likely states

e Two actions (a and b)

e 54 subjects



Prediction

e Each subject has ‘threshold belief’
e Determined by information costs
e If prior is within those beliefs

e Both actions used
e Learning takes place
e Same posteriors always used

e If prior is outside these beliefs

e No learning takes place
e Only one action used



e Distribution of thresholds for 54 subjects

Posterior Range | N | %
[0.5,0.6) 14 | 25
[0.6,0.75) 12 | 22
[0.75,0.85) 12 | 22
[0.85,1] 16 | 29

Results



Results

e Fraction of subjects who gather no information and always

choose a

u(1)
0.6 \ 0.75 \ 0.85

Never choose b | Threshold below "Ll(l) 35% | 27% | 29%
Threshold above (1) | 0% | 7% | 13%

e Fraction of subjects who almost always choose a

u(1)
0.6 | 0.75 | 0.85

Choose b<< 3 | Threshold below }1(1) 50% | 27% | 37%
Threshold above (1) | 3% | 7% | 25%
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Behavioral Properties

e Locally Invariant Posteriors
e Invariant Likelihood Ratio and Response to Incentives

e Invariance Under Compression



Invariant Likelihood Ratio and Responses to Incentives

e For chosen actions our condition implies

u(a(w)) — u(b(w)) _
in7°(w) — n7*(w)

e Constrains how DM responds to changes in incentives



Invariant Likelihood Ratio - Example

Experiment 2
Decision Payoffs
Problem | U(a,1) | U(a,2) | U(b,1) | U(b,2)
1 5 0 0 5
2 40 0 0 40
3 70 0 0 70
4 95 0 0 95
5 40

=.=A

In32(5) — In72(5) _ In7°(40) — In3°(40)

e One observation pins down A

e Determines behavior in all other treatments



Invariant Likelihood Ratio - Example

% of
accurate
choices

Tau(2)

e Observation of choice accuracy for x = 5 pins down A



Invariant Likelihood Ratio - Example

% of
accurate
choices

Tau(2)

e Implies expansion path for all other values of x

e This does not hold in our experimental data



Estimated Cost

Invariant Likelihood Ratio - An Experimental Test
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Aggregate Data

Incentive v Accuracy with Predicted Expansion Path
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e In aggregate, subjects respond less slowly than Shannon
predicts



Individual Level Data

Actual
08 09 10
I
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Predicted

e Predicted vs Actual behavior in DP 4 given behavior in DP 1
e 44% of subjects adjust significantly more slowly than Shannon
e 19% significantly more quickly



Behavioral Properties

e Locally Invariant Posteriors
e Invariant Likelihood Ratio and Response to Incentives

e Invariance Under Compression



Symmetry

Compression implies the property of symmetry
Behavior invariant to the labelling of states

Optimal beliefs depend only on the relative value of actions in
that state

Implies that there is no concept of ‘perceptual distance’



A Simple Example

e N equally likely states of the world {1,2....., N}

e Two actions

Payoffs
States 1% %—l—l,..,N
action f 10 0
action g 0 10

e Mutual Information predicts a quantized information structure

e Optimal information structure has 2 signals
e Probability of making correct choice is independent of state

o (42)
1+ exp (“(io )

—




Predictions for the Simple Problem - Shannon

Probability

Probability of
choosing correct
act

Probability of
choosingact f

State
N/2

e Probability of correct choice does not go down near threshold



Predictions for the Simple Problem - Shannon

Probability

Probability of
choosing correct
act

Probability of
choosingact f

State
N/2

e Not true of other information structures (e.g. uniform signals)



Symmetry

e Shannon Model makes strong predictions for the simple
problem

e Accuracy not affected by closeness to threshold
e In contrast to (e.g.) uniform signals

e Which model is correct?
e |t may depend on the perceptual environment

e Test prediction in two different environments



Environment 1 (Balls)
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Environment 2 (Letters)
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Action | Payoff state letter < N Payoff state letter > N

f 10 0
g 0 10




Experiment

2 treatments
‘Balls’ Experiment

e 23 subjects
e Vary the number of states

‘Letters’ Experiment

e 24 subjects
e Vary the relative frequency of the state letter

Test whether probability of correct choice is lower nearer the
threshold



Balls Experiment
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e Probability of correct choice significantly correlated with
distance from threshold (p<0.001)



Letters Experiment
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e Probability of correct choice does vary between states
e But is not correlated with distance from threshold (p=0.694)



Invariance Under Compression

Another failure of Invariance Under Compression comes from
Shaw and Shaw [1977]

Have to recognize which of three letters has appeard
Letter can appear at any of 8 points in a circle

Each appearance point equally likely

Have to say what letter appeared

Note that the position in which the letter appears is payoff
irrelevant



Further Prior Invariance
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Further Prior Invariance

e Now make it more likely that letter appears at 'Due North' or
'Due South’

e Changes priors across payoff irrelevant states

e Should not affect behavior
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Summary

Introduced Shannon Mutual Information as a potential cost
function

e Popular in the literature
e 'Cobb Douglas’ vs ‘Revealed Preference’

Introduced some analytical tools to help solve the Shannon
model

MM - necessary conditions
Necessary + Sufficient Conditions
Posterior-based approach

[ )
[ )
[ )
e Behavioral characterization

Shown that the Shannon model can give rise to endogenous
consideration set formation

Discussed the experimental evidence for other behavioral
implications
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