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Sequential Sampling Models

In the last couple of lectures we have considered models in
which the form of information acquisition has been very
flexible

Today we are going to consider a set of models in which the
process is much more constrained

e Sequential sampling models

These models have been hugely influential in the psychology
literature

Increasingly so in the economics literature

e On the first day of this year's Cowles’ theory conference, 5 of
the 6 papers were about sequential sampling models (!)
e Including papers by Yeon Koo Che and Mike Woodford



The Basic Idea

e Consider choosing between two alternatives

e Typically a perceptual task - e.g. Left or Right in a dot motion
task
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The Basic Idea

Consider choosing between two alternatives

o Typically a perceptual task - e.g. Left or Right in a dot motion
task

e More recently applied to value based decision making - e.g.
Apple or Orange

Over time, evidence accumulates about each alternative

e Observe dots moving left or right

This evidence is noisy

The DM must construct a rule that tells them when to stop
gathering more information and make a choice

This is (basically) the class of sequential sampling models
(SSMs)



Why So Popular

e There are (I think) four reasons that these models have
proved so popular
@ |Intuitive plausibility
@® Biological plausibility
© Links to optimality
O Ability to predict relationship between choice and reaction time



Sequential Sampling Models

e There is a huge variety of sequential sampling models

o Relative vs absolute stopping rules
e Discrete vs continuous accumulation of evidence
e Fixed vs collapsing bounds

¢ See Ratcliff and Smith [2004] for a taxonomy
e We will first consider the (Drift) Diffusion version of the model
e See Shadlen et al. [2007]



Drift Diffusion Model

e An SSM has three components

@ The process by which evidence is accumulated
@® The bounds that govern the decision
© Reaction (i.e. non-decision) time



Drift Diffusion

e Evidence Accumulation
o We will assume that in each period the DM receives a signal X

e Distributed iid according to a distribution with mean p and
variance o2

e Evidence is therefore of the form of a sequence {Xl, o Xn, }
e The 'sum’ of evidence is therefore given by a sequence
{Y1,.... Yn, ..} where

Yo=Y X,

x=1
e Easy to move to continuous setting if convenient

% = 1+ N(0,0Vdt)



Drift Diffusion

e Boundary

e We will assume that evidence accumulates until either Y > A
or Y < —A

e Reaction time

e We will assume that, on each trial, there is a time period t,y4
before which evidence starts to accumulate

e This is drawn from a distribution with mean %4

e Basically a kludge to better fit the data



Drift Diffusion
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Drift Diffusion - Links to Experiment

How do the parameters of the DDM link to the parameters of
the experiment?

Let C be the strength of the signal on a particular trial

e e.g. the fraction of dots moving to the left

W is assumed to be an increasing function of C
What about boundaries A?

e Cannot depend on the C on a particular trial

e But may depend on the expected distribution of C

e May also depend on the costs of different type of error
e See discussion of optimality

Note, o, i and A are not separately identified
e Willseto=1



Drift Diffusion - Predictions

Let's assume for the moment that A is fixed
What are the predictions of the model?
Note that the data of interest is

e Joint distribution of choices and reaction times
e Conditional on the signal strength C

We will go through this quickly
e For details see Shadlen et al [2007]



Choice Probabilities

First, we want to understand the probability of choosing each
option as a function of C

This boils down to calculating the probability that Y; will first
hit A or —A as a function of the distribution of X

A handy reminder: The moment generating function (MGF)
of a random variable:

My (6) = E(eX) :/f(x)ef’de

Recall that the nth moment of the distribution is given by
d"Mx (0) |
4o 0=0

Typically, a MGF will have two values of 6 such that
Mx (6) = 1: 0 and 6,



Choice Probabilities

Step 1: Note that the MGF of the unconstrained process Y,
is

My, (6) = M3 (6)

Step 2: Let Y be the random variable which is the
termination value of Y. Then

My (0) = Pe™ + (1 —P.)e ™

where P, is the probability of terminating at the the top
boundary (this is what we want to find)
Step 3: Define Wald's Martingale

Zy = My"(0)e®™
Step 4: Note that
E[Zn+1|Zn] = Zn

i.e. Wald's Martingale is a martingale



Choice Probabilities

e Step 5: Note that
E[Zy) = E[Mx"(8)e”Y"] = My "(0)E[e”"] = 1

e Step 6: Define Z, the 'stopped’ version of Z

5 —hn oY
= MX”(H)e
where n is a random variable

e Step 7: Apply the Optional Stopping theorem for martingales

which states
E(Z] = E[Z)]

and so



Choice Probabilities

e Step 8: Recall that there is a value 61 such that
Mx (61) =1, and so

E [egly} =1

e This is true as long as E(X) # 0 and X can take positive and
negative

e Step 9: Note that this is the MGF for Y and so

P+e91A—i—(l—P+)e_91A = 1
1
= P=1raa

e Step 10: Note that if we make some distributional
assumptions about X we can solve for 6,

e eg. if X~ N(u,1) then

61 = —2}4



Choice Probabilities

If we then assume that i is linearly related to stimulus
strength by

= kC
then this gives us

1

Py = 1+ e—2kCA

This is basically the Logit choice function



Reaction Time

What about the distribution of the length of time until choice
is made?

Take derivatives of the following with respect to 0
E[Mx"(6)e?"] =1
giving
E [eW Y My (0) — eeVM;l—"(e)M'X(e)} =0

Evaluate at 6 = 0, and recall that M} (0) = u and
Mx (0) =1 gives

Note that



Reaction Time

e Subbing in for Py and applying some magic gives

A —0,A
E[n]—ytanh< 5 )

e Which, under normality, becomes

E[A] = ;‘tanh (4A)

or
A
E[n] = Etanh (kCA)

e This an expression for the expected number of 'steps’ before a
choice is made



Speed/Accuracy Trade Off

So far we have derived expressions for the marginal
distribution of choice accuracy and reaction time
However, the model makes predictions about their joint
distribution

This is Speed/Accuracy trade off

e Are ‘correct’ choices quicker or slower than incorrect ones?

We have to be careful here about exactly what we mean

e For a fixed difficulty: No parameters of the model change

e For unanticipated changes in difficulty: C changes, meaning u
changes

e For anticipated changes in difficulty: C changes, p changes,
and A may also change



Speed/Accuracy Trade Off

Case 1: Fixed difficulty

Surprisingly there is no speed accuracy trade off in the case in
which

e Bounds are equidistant from the starting point
e Momentary evidence accumulation is normal

For every path that goes to the upper bound there is an
equivalent path that goes to the lower bound

The mean reaction time is the same for correct and incorrect
responses



Speed/Accuracy Trade Off

e Case 2: Unanticipated changes in difficulty
e An increase in signal strength will

@ Increase the probability of a correct choice

1
Py = 1+ e 2kCA
@® Decrease reaction time
Elp] = Atanh (kCA)
 kC
dE[n] A A? )
= e = —k—c2tanh (kCA)—Q—?(l—tanh (kCA)) <0

e Speed/Accuracy relationship positive on average: Faster
choices are more accurate

e However, controlling for difficulty there will be no relationship
between speed and accuracy



Speed/Accuracy Trade Off

Case 3: Anticipated changes in difficulty

Change in accuracy and reaction time will depend on change
in u and change in A

Requires a model of where A comes from.

See next section....



Optimality

e So far, we have described a procedure for decision making
e We have no idea whether it is in fact any good

e j.e. is this a model of bounded rationality?

e The answer is yes, in the sense that there are problems for
which this class of behavior is optimal.



Optimality and the Sequential Likelihood Ratio Test

e Consider the following problem

e There are two states of the world, wi and w»

e In each time period you observe a signal 7y the distribution of
which is f(y|w;)

e You have to identify the true state with an imposed level of
accuracy

e What decision rule minimizes the average number of observed
signals

e Optimal solution consists of boundaries ki, k» on

f(vilw)f (valwr)f(v3lwr)....F(7,lw1)
fF(r1lw2) f(valw2)f(rs]w2)... f(7,|w2)

Such that evidence is accumulated until the likelihood ratio
goes above ki or below kp

e This result dates back to Wald and Wolfowitz [1947]



Optimality and the Sequential Likelihood Ratio Test

The sequential likelihood ratio test can be implemented as a
diffusion model

Take logs of the likelihood ratio

fF(rilwi)f (vo|wi)f (vs]wr)...F(7,|wi)
f(71lw2)f(ralw2)f(r3lw2)....f(7,lw2)
= [log f(7;|w1) — log f(71|w2)]

+ [log £ (7v5|w1) — log f(77,]w2)]

+ [log f (73]w1) — log f(73|w2)] ..

log

So, defining X; = log f(y;|w1) — log f(y1|w2), the optimal
stopping rule is to wait until }_; X; goes above log k; or below
log ko

If v is distributed log normally, the X; will be distributed
normally



Consumer Choice

e This can be mapped into a consumer choice problem

e Choosing between two goods

e The value of one good is 6, the value of the other is 6,

e Evidence accumulates with a drift rate which is linearly related
to (9/ — Gr)

e Per signal cost ¢

e This fits into the above framework if there are only two
possible ‘states’

e Either left is good and right is bad
e Or visa versa
e Difference in utilities is known

o See Fudenberg et al. [2016]



The Problem with Fixed Boundaries

The model so far predicts either

e No speed accuracy trade off at all if difficulty doesn't change
e No speed accuracy conditional on difficulty if there are
unanticipated changes in difficulty

As we shall see this does not fit with the evidence

Result comes directly from the fact that boundaries are fixed
over time

This in turn is a result of the assumption that there are only
two possible states of the world
o Intuitively, can never learn that two alternatives are hard to
distinguish
e i.e. learn that you are close to indifferent between two goods



Learning Indifference

What if, instead, your prior is that the value of each
alternative is drawn from some distribution

What does optimal policy look like?

Now, if you have not hit a boundary after a long time, it tells
you that the drift rate is likely to be low

e Implies difference in values is low
e Value of further learning likely to be small

This case is studied by Fudenberg et al [2016] and Tajima et
al [2016]

Turns out optimal policy is to have bounds that collapse over
time



Drift Diffusion
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Learning Indifference

e This will lead to a positive correlation between speed and
accuracy

e On average across all decision problems
e Conditional on difficulty

e For a fixed drift rate, hitting the boundary later increases the
probability of error



Negative Speed Accuracy Trade Off

Does the above mean that a positive speed accuracy trade off
is inevitable
No!
Fix a difficulty level, and increase the rewards for making the
correct decision

e e.g. the experiments we saw in rational Inattention
This will have the effect of increasing the boundaries A, while
leaving C unchanged

1
Py = 1 + e 2KCA
_ A
E[n] = — tanh (kCA)

kC

Will increase both accuracy and reaction times
So averaging over changes in reward level we will see a
negative correlation between speed and accuracy



Experimental Evidence

The literature testing DDM type models is vast...
...and frankly | do not know half of it
Good recent reviews include

e Radcliff and Smith [2004]
e Bogacz et al [2006] (also covers a lot of the theory well)
e Radcliff and McKoon [2008]

I will

e Report some of the stylized facts from the perceptual literature
e Discuss an application to economic decision making



Stylized Facts - Radcliff and Mckoon [2008]

@ Reaction time distribution is positively skewed

® Increase in difficulty increases reaction time and decreases
accuracy

© Increase in difficulty increases positive skew

O Response times for errors are often slower than for correct
responses, even controlling for difficulty

e But this can flip when accuracy is high or speed is emphasized

©® Emphasizing speed rather than accuracy reduces reaction time
and increases error



Stylized Facts - Radcliff and Mckoon [2008]

e Can these facts be matched by the DDM with non-collapsing
boundaries?
e Yes, if one allows for variability in drift rates and starting
points
e Importantly, not completely explained by apparent task
difficulty
e This is sometimes called the 'full' DDM with 7 parameters

e Mean and SD of the drift rate

e Boundary

e Mean and variance of the starting point
e Mean and variance of non-decision time



Positively Skewed Reaction Time

e This comes directly from variance in the drift rate

. Low
High :
Drift Q'/&F Z—

X

Time—-




Effect of Difficulty

e Increase in difficulty decreases drift rate

e We showed that this decreases accuracy and increases
reaction time

e It will also increases the skewness (by the argument on
previous slide)



Speed/Accuracy Trade off

As we discussed, if there is no variance in drift rate, model
predicts no speed accuracy trade off

However, if there is variance in the drift rate, this can make
error trials slower than correct trials

e This is an alternative to collapsing boundaries
e Model fits tend to favor this approach

How can the model capture the reverse effect?

Variance in starting point



Speed/Accuracy Trade off

Weighted
____—%#MeanRT
Pr=.98 Pr=.80 =395ms
a RT=350ms RT=450ms

v Correct Respond A
a+.5s; / Y Responses
z

a-5s, /

Error Responses
%p=20 P02 Respond B
RT=350ms RT=450ms
Weighted
Mean RT
=359ms

e As a proportion, higher fraction of errors come from starting
points near that boundary

e Means they have lower response time on average



Effect of Emphasizing Speed vs Accuracy

Emphasizing speed rather than accuracy is assumed to
increase value of time relative to success

Optimal response is to bring boundaries in
Would lead to a reduction in accuracy and increase in response

As seen in the data



DDM in Economic Choice

e Neuroeconomists have been very keen in using the DDM to fit
economic choice

e Particularly Rangel Lab

e Milosavljecic et al [2010] paragdimatic example

e Subjects asked to rank 50 food items on a 5 point scale

Used to measure ‘utility’

Then make 750 binary choices between randomly selected pairs
High and low time pressure conditions

One choice actualized at the end of the experiment



DDM in Economic Choice

Table 1: Individual performance by condition, averaged over all values of d.

Mean RT (SEM.)

Subject N Accuracy (%) All Trials Correct Trials Error Trials
LOW TIME PRESSURE
1 749 758 436 (4.77) 444573 411(7.83)
2 749 81.0 514(4.03) 510 (4.16) 530 (11.46)
3 750 844 623(5.44) 608 (5.77) 704 (13.37)
4 738 90.0 533(5.89) 534 (6.02) 5212278)
5 719 978 811 (10.26) 807 (10.22) 982 (98.29)
6 750 853 681(6.11) 671 (6.34) 737 (18.60)
7 746 8.7 480(6.23) 484 (6.37) 452(17.53)
8 738 66.8 520(6.73) 510 (6.67) 540 (13.10)
MEAN 742 832 574 578 552
HIGH TIME PRESSURE
1 749 76.5 343(2.88) 34(3.24) 339 (6.26)
2 T4 73.1 497 (3.13) 496 (3.64) 498 (6.14)
3 747 752 479(4.13) 475 (4.40) 492 (9.99
4 747 853 404 (3.64) 398 (3.76) 439 (11.26)
5 745 80.1 406 (2.44) 405 (2.57) 409 (6.57)
6 738 72 520(3.70) 521 (4.45) 518 (6.60)
7 747 63.5 325(2.61) 335(3.35) 307 (3.92)
8 748 80.7 436(3.26) 434 (349 446 (8.49)

MEAN 745 757 426 426 426




DDM in Economic Choice
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Summary

e Full DDM can do a reasonable job of fitting the data in both

e Perceptual tasks
o Choice tasks

e However, it needs the additional degrees of freedom provided
by randomness in the

e Drift rate
e Starting point

e With these parameters, adding decaying boundaries does not
improve fit

e Interesting question: how to differentiate between stochastic
drift rates and collapsing boundaries



Biological Plausibility

One of the reasons that SSMs are so popular is that they
seem to relate to actual neurological processes

See for example

e Gold and Shadlen [2007]
e Bogacz [2007]

Here is some evidence from Shadlen et al. [2007]

Recording from various brain areas in monkeys during a dot
motion task



Biological Plausibility

Momentary accumulation of evidence is encoded in an area
MT/V5

Known from lesion studies and stimulation that this area is
involved with eye movements

Moreover, activity seems approximately linear in coherence

Parameter estimates from neural data similar to those from
behavior



Biological Plausibility




Biological Plausibility

e A second area known as LIP appears to record accumulated

evidence
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Summary

SSMs provide a model that allows for joint predictions of
reaction times and choice probabilities

The full DDM provides a parsimonious way of modelling both
perceptual and economic decisions

e But potentially has a whiff of 'kludge’
Other interesting extensions

e Multiple options
e The role of attention
e Revealed indifference

Interesting experimental avenue: chase down the implications
of the optimal model.
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