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Sequential Sampling Models

• In the last couple of lectures we have considered models in
which the form of information acquisition has been very
flexible

• Today we are going to consider a set of models in which the
process is much more constrained

• Sequential sampling models

• These models have been hugely influential in the psychology
literature

• Increasingly so in the economics literature
• On the first day of this year’s Cowles’theory conference, 5 of
the 6 papers were about sequential sampling models (!)

• Including papers by Yeon Koo Che and Mike Woodford



The Basic Idea

• Consider choosing between two alternatives
• Typically a perceptual task - e.g. Left or Right in a dot motion
task



The Basic Idea



The Basic Idea

• Consider choosing between two alternatives
• Typically a perceptual task - e.g. Left or Right in a dot motion
task

• More recently applied to value based decision making - e.g.
Apple or Orange

• Over time, evidence accumulates about each alternative
• Observe dots moving left or right

• This evidence is noisy
• The DM must construct a rule that tells them when to stop
gathering more information and make a choice

• This is (basically) the class of sequential sampling models
(SSMs)



Why So Popular

• There are (I think) four reasons that these models have
proved so popular

1 Intuitive plausibility
2 Biological plausibility
3 Links to optimality
4 Ability to predict relationship between choice and reaction time



Sequential Sampling Models

• There is a huge variety of sequential sampling models
• Relative vs absolute stopping rules
• Discrete vs continuous accumulation of evidence
• Fixed vs collapsing bounds

• See Ratcliff and Smith [2004] for a taxonomy
• We will first consider the (Drift) Diffusion version of the model

• See Shadlen et al. [2007]



Drift Diffusion Model

• An SSM has three components

1 The process by which evidence is accumulated
2 The bounds that govern the decision
3 Reaction (i.e. non-decision) time



Drift Diffusion

• Evidence Accumulation
• We will assume that in each period the DM receives a signal X

• Distributed iid according to a distribution with mean µ and
variance σ2

• Evidence is therefore of the form of a sequence {X1, ...,Xn , ..}
• The ’sum’of evidence is therefore given by a sequence
{Y1, ...,Yn , ..} where

Yn =
n

∑
x=1

Xn

• Easy to move to continuous setting if convenient

dY
dt

= µ+N(0, σ
√
dt)



Drift Diffusion

• Boundary
• We will assume that evidence accumulates until either Y > A
or Y < −A

• Reaction time
• We will assume that, on each trial, there is a time period tnd
before which evidence starts to accumulate

• This is drawn from a distribution with mean t̄nd
• Basically a kludge to better fit the data



Drift Diffusion



Drift Diffusion - Links to Experiment

• How do the parameters of the DDM link to the parameters of
the experiment?

• Let C be the strength of the signal on a particular trial
• e.g. the fraction of dots moving to the left

• µ is assumed to be an increasing function of C

• What about boundaries A?
• Cannot depend on the C on a particular trial
• But may depend on the expected distribution of C
• May also depend on the costs of different type of error
• See discussion of optimality

• Note, σ, µ and A are not separately identified

• Will set σ = 1



Drift Diffusion - Predictions

• Let’s assume for the moment that A is fixed
• What are the predictions of the model?
• Note that the data of interest is

• Joint distribution of choices and reaction times
• Conditional on the signal strength C

• We will go through this quickly
• For details see Shadlen et al [2007]



Choice Probabilities

• First, we want to understand the probability of choosing each
option as a function of C

• This boils down to calculating the probability that Yt will first
hit A or −A as a function of the distribution of X

• A handy reminder: The moment generating function (MGF)
of a random variable:

MX (θ) = E (e
θX ) =

∫
f (x)eθxdx

• Recall that the nth moment of the distribution is given by

dnMX (θ)

dθn
|θ=0

• Typically, a MGF will have two values of θ such that
MX (θ) = 1: 0 and θ1



Choice Probabilities

• Step 1: Note that the MGF of the unconstrained process Yn
is

MYn (θ) = M
n
X (θ)

• Step 2: Let Ȳ be the random variable which is the
termination value of Y . Then

MȲ (θ) = P+e
θA + (1− P+)e−θA

where P+ is the probability of terminating at the the top
boundary (this is what we want to find)

• Step 3: Define Wald’s Martingale

Zn = M−nX (θ)eθYn

• Step 4: Note that

E [Zn+1|Zn ] = Zn
i.e. Wald’s Martingale is a martingale



Choice Probabilities

• Step 5: Note that

E [Zn ] = E [M−nX (θ)eθYn ] = M−nX (θ)E [eθYn ] = 1

• Step 6: Define Z̄ , the ’stopped’version of Z

Z̄ = M−n̄X (θ)eθȲ

where n̄ is a random variable

• Step 7: Apply the Optional Stopping theorem for martingales
which states

E [Z̄ ] = E [Zn ]

and so
E [Z̄ ] = E

[
M−n̄X (θ)eθȲ

]
= 1



Choice Probabilities

• Step 8: Recall that there is a value θ1 such that
MX (θ1) = 1, and so

E
[
eθ1Ȳ

]
= 1

• This is true as long as E (X ) 6= 0 and X can take positive and
negative

• Step 9: Note that this is the MGF for Ȳ and so

P+eθ1A + (1− P+)e−θ1A = 1

⇒ P+ =
1

1+ eθ1A

• Step 10: Note that if we make some distributional
assumptions about X we can solve for θ1
• e.g. if X ∼ N(µ, 1) then

θ1 = −2µ



Choice Probabilities

• If we then assume that µ is linearly related to stimulus
strength by

µ = kC

then this gives us

P+ =
1

1+ e−2kCA

• This is basically the Logit choice function



Reaction Time

• What about the distribution of the length of time until choice
is made?

• Take derivatives of the following with respect to θ

E [M−nX (θ)eθYn ] = 1

giving

E
[
eθȲ ȲM−n̄X (θ)− eθȲM−1−nX (θ)M ′X (θ)

]
= 0

• Evaluate at θ = 0, and recall that M ′X (0) = µ and
MX (0) = 1 gives

E [Ȳ − n̄µ] = 0

⇒ E (n̄) =
E [Ȳ ]

µ

• Note that
E [Ȳ ] = P+A+ (1− P+)(−A)



Reaction Time

• Subbing in for P+ and applying some magic gives

E [n̄] =
A
µ
tanh

(−θ1A
2

)
• Which, under normality, becomes

E [n̄] =
A
µ
tanh (µA)

or

E [n̄] =
A
kC

tanh (kCA)

• This an expression for the expected number of ’steps’before a
choice is made



Speed/Accuracy Trade Off

• So far we have derived expressions for the marginal
distribution of choice accuracy and reaction time

• However, the model makes predictions about their joint
distribution

• This is Speed/Accuracy trade off
• Are ‘correct’choices quicker or slower than incorrect ones?

• We have to be careful here about exactly what we mean
• For a fixed diffi culty: No parameters of the model change
• For unanticipated changes in diffi culty: C changes, meaning µ
changes

• For anticipated changes in diffi culty: C changes, µ changes,
and A may also change



Speed/Accuracy Trade Off

• Case 1: Fixed diffi culty
• Surprisingly there is no speed accuracy trade off in the case in
which

• Bounds are equidistant from the starting point
• Momentary evidence accumulation is normal

• For every path that goes to the upper bound there is an
equivalent path that goes to the lower bound

• The mean reaction time is the same for correct and incorrect
responses



Speed/Accuracy Trade Off

• Case 2: Unanticipated changes in diffi culty
• An increase in signal strength will

1 Increase the probability of a correct choice

P+ =
1

1+ e−2kCA

2 Decrease reaction time

E [n̄] =
A
kC

tanh (kCA)

⇒ dE [n̄]
dC

= − A
kC2

tanh (kCA) +
A2

C
(1− tanh2(kCA)) < 0

• Speed/Accuracy relationship positive on average: Faster
choices are more accurate

• However, controlling for diffi culty there will be no relationship
between speed and accuracy



Speed/Accuracy Trade Off

• Case 3: Anticipated changes in diffi culty
• Change in accuracy and reaction time will depend on change
in µ and change in A

• Requires a model of where A comes from.
• See next section....



Optimality

• So far, we have described a procedure for decision making
• We have no idea whether it is in fact any good

• i.e. is this a model of bounded rationality?

• The answer is yes, in the sense that there are problems for
which this class of behavior is optimal.



Optimality and the Sequential Likelihood Ratio Test

• Consider the following problem
• There are two states of the world, ω1 and ω2
• In each time period you observe a signal γ the distribution of
which is f (γ|ωi )

• You have to identify the true state with an imposed level of
accuracy

• What decision rule minimizes the average number of observed
signals

• Optimal solution consists of boundaries k1, k2 on

f (γ1|ω1)f (γ2|ω1)f (γ3|ω1)....f (γn |ω1)

f (γ1|ω2)f (γ2|ω2)f (γ3|ω2)....f (γn |ω2)

Such that evidence is accumulated until the likelihood ratio
goes above k1 or below k2

• This result dates back to Wald and Wolfowitz [1947]



Optimality and the Sequential Likelihood Ratio Test

• The sequential likelihood ratio test can be implemented as a
diffusion model

• Take logs of the likelihood ratio

log
[
f (γ1|ω1)f (γ2|ω1)f (γ3|ω1)....f (γn |ω1)

f (γ1|ω2)f (γ2|ω2)f (γ3|ω2)....f (γn |ω2)

]
= [log f (γ1|ω1)− log f (γ1|ω2)]

+ [log f (γ2|ω1)− log f (γ2|ω2)]

+ [log f (γ3|ω1)− log f (γ3|ω2)] ..

• So, defining Xi = log f (γ1|ω1)− log f (γ1|ω2), the optimal
stopping rule is to wait until ∑i Xi goes above log k1 or below
log k2

• If γ is distributed log normally, the Xi will be distributed
normally



Consumer Choice

• This can be mapped into a consumer choice problem
• Choosing between two goods
• The value of one good is θl the value of the other is θr
• Evidence accumulates with a drift rate which is linearly related
to (θl − θr )

• Per signal cost c

• This fits into the above framework if there are only two
possible ‘states’

• Either left is good and right is bad
• Or visa versa
• Difference in utilities is known

• See Fudenberg et al. [2016]



The Problem with Fixed Boundaries

• The model so far predicts either
• No speed accuracy trade off at all if diffi culty doesn’t change
• No speed accuracy conditional on diffi culty if there are
unanticipated changes in diffi culty

• As we shall see this does not fit with the evidence
• Result comes directly from the fact that boundaries are fixed
over time

• This in turn is a result of the assumption that there are only
two possible states of the world

• Intuitively, can never learn that two alternatives are hard to
distinguish

• i.e. learn that you are close to indifferent between two goods



Learning Indifference

• What if, instead, your prior is that the value of each
alternative is drawn from some distribution

• What does optimal policy look like?
• Now, if you have not hit a boundary after a long time, it tells
you that the drift rate is likely to be low

• Implies difference in values is low
• Value of further learning likely to be small

• This case is studied by Fudenberg et al [2016] and Tajima et
al [2016]

• Turns out optimal policy is to have bounds that collapse over
time



Drift Diffusion



Learning Indifference

• This will lead to a positive correlation between speed and
accuracy

• On average across all decision problems
• Conditional on diffi culty

• For a fixed drift rate, hitting the boundary later increases the
probability of error



Negative Speed Accuracy Trade Off

• Does the above mean that a positive speed accuracy trade off
is inevitable

• No!
• Fix a diffi culty level, and increase the rewards for making the
correct decision
• e.g. the experiments we saw in rational Inattention

• This will have the effect of increasing the boundaries A, while
leaving C unchanged

P+ =
1

1+ e−2kCA

E [n̄] =
A
kC

tanh (kCA)

• Will increase both accuracy and reaction times
• So averaging over changes in reward level we will see a
negative correlation between speed and accuracy



Experimental Evidence

• The literature testing DDM type models is vast...

• ...and frankly I do not know half of it
• Good recent reviews include

• Radcliff and Smith [2004]
• Bogacz et al [2006] (also covers a lot of the theory well)
• Radcliff and McKoon [2008]

• I will
• Report some of the stylized facts from the perceptual literature
• Discuss an application to economic decision making



Stylized Facts - Radcliff and Mckoon [2008]

1 Reaction time distribution is positively skewed

2 Increase in diffi culty increases reaction time and decreases
accuracy

3 Increase in diffi culty increases positive skew

4 Response times for errors are often slower than for correct
responses, even controlling for diffi culty

• But this can flip when accuracy is high or speed is emphasized

5 Emphasizing speed rather than accuracy reduces reaction time
and increases error



Stylized Facts - Radcliff and Mckoon [2008]

• Can these facts be matched by the DDM with non-collapsing
boundaries?

• Yes, if one allows for variability in drift rates and starting
points

• Importantly, not completely explained by apparent task
diffi culty

• This is sometimes called the ’full’DDM with 7 parameters

• Mean and SD of the drift rate
• Boundary
• Mean and variance of the starting point
• Mean and variance of non-decision time



Positively Skewed Reaction Time

• This comes directly from variance in the drift rate



Effect of Diffi culty

• Increase in diffi culty decreases drift rate
• We showed that this decreases accuracy and increases
reaction time

• It will also increases the skewness (by the argument on
previous slide)



Speed/Accuracy Trade off

• As we discussed, if there is no variance in drift rate, model
predicts no speed accuracy trade off

• However, if there is variance in the drift rate, this can make
error trials slower than correct trials

• This is an alternative to collapsing boundaries
• Model fits tend to favor this approach

• How can the model capture the reverse effect?
• Variance in starting point



Speed/Accuracy Trade off

• As a proportion, higher fraction of errors come from starting
points near that boundary

• Means they have lower response time on average



Effect of Emphasizing Speed vs Accuracy

• Emphasizing speed rather than accuracy is assumed to
increase value of time relative to success

• Optimal response is to bring boundaries in
• Would lead to a reduction in accuracy and increase in response
• As seen in the data



DDM in Economic Choice

• Neuroeconomists have been very keen in using the DDM to fit
economic choice

• Particularly Rangel Lab

• Milosavljecic et al [2010] paragdimatic example
• Subjects asked to rank 50 food items on a 5 point scale
• Used to measure ‘utility’
• Then make 750 binary choices between randomly selected pairs
• High and low time pressure conditions
• One choice actualized at the end of the experiment



DDM in Economic Choice



DDM in Economic Choice



Summary

• Full DDM can do a reasonable job of fitting the data in both

• Perceptual tasks
• Choice tasks

• However, it needs the additional degrees of freedom provided
by randomness in the

• Drift rate
• Starting point

• With these parameters, adding decaying boundaries does not
improve fit

• Interesting question: how to differentiate between stochastic
drift rates and collapsing boundaries



Biological Plausibility

• One of the reasons that SSMs are so popular is that they
seem to relate to actual neurological processes

• See for example
• Gold and Shadlen [2007]
• Bogacz [2007]

• Here is some evidence from Shadlen et al. [2007]

• Recording from various brain areas in monkeys during a dot
motion task



Biological Plausibility

• Momentary accumulation of evidence is encoded in an area
MT/V5

• Known from lesion studies and stimulation that this area is
involved with eye movements

• Moreover, activity seems approximately linear in coherence
• Parameter estimates from neural data similar to those from
behavior



Biological Plausibility



Biological Plausibility

• A second area known as LIP appears to record accumulated
evidence



Summary

• SSMs provide a model that allows for joint predictions of
reaction times and choice probabilities

• The full DDM provides a parsimonious way of modelling both
perceptual and economic decisions

• But potentially has a whiff of ’kludge’

• Other interesting extensions
• Multiple options
• The role of attention
• Revealed indifference

• Interesting experimental avenue: chase down the implications
of the optimal model.
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