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What is Bounded Rationality?

• Start with a ’standard’economic model
• e.g. utility maximization

C (A) = max
x∈A

u(x)

• If the model is wrong how can we adjust it?
• Two ’minimal’adjustments we could make

1 Modify objective
2 Modify constraints

• Most of behavioral economics concerned with approach 1
• Loss aversion
• Ambiguity aversion
• etc

• Bounded rationality concerned with approach 2
• Optimal behavior within some additional costs/constraints



What is Bounded Rationality?

• Costs to acquiring or processing information
• E.g. Simon [1955], Stigler [1961], Sims [2003]

• Limits on reasoning
• E.g. Camerer [2004], Crawford [2005]

• Thinking Aversion
• E.g. Ergin and Sarver [2010], Ortoleva [2013]

• Bounded memory
• E.g. Wilson [2014]

• Automata
• E.g. Piccione and Rubinstein [1993]

• Semi-Rational Models
• E.g. Gabaix et al. [2008], Esponda [2008], Rabin and Vayanos
[2010], Gabaix [2013],

• Heuristics
• Tversky and Kahneman [1974], Gigerenzer [2000]



Advantages and Disadvantages of Bounded Rationality

• Advantage:
• Intuitive plausibility

• Evolution equipped us to optimize within constraints

• Can ’microfound’behavioral models
• Leads to new predictions: how behavioral phenomena can
change with the environment

• Disadvantages:
• May be wrong!
• What is correct constraint?
• Regress issue



Introduction

• Start with one particular constraint on decision making:
Limits on attention

• Attention is a scare resource

• The constraint is binding in economic choice



Choice Problem 1



Choice Problem 2



Consideration Sets

• Choice Problem 1 and 2 are diffi cult

• Lots of available alternatives
• Understanding each available alternative takes time and effort

• Do people really think hard about each available alternative?
• The marketing literature thinks not
• Since the 1960s have made use of the concept of
consideration (or evoked) set

• A subset of the available options from which the consumer
makes their choice

• Alternatives outside the consideration set are ignored

• Some key references
• Hauser and Wernerfelt [1990]
• Roberts and Lattin [1991]



Consideration Sets

• What was the evidence that convinced marketers that
consideration sets played an important role in choice?

• Intuitive plausibility
• Verbal reports (e.g. Brown and Wildt 1992)
• Lurking around supermarkets and seeing what people look at
(e.g. Hoyer 1984)

• What are the implications for choice?
• i.e. how could we test a model of consideration set formation?
• What are its implications?



A (Naive) Model of Choice with Consideration Sets

• Let
• u : X → R be a utility function
• E : X → X describe the evoked set

• E (A) ⊆ A is the set of considered alternatives from choice
problem A

• Choice is given by

C (A) = arg max
x∈E (A)

u(x)

• What are the testable implications of this model?
• Nothing!
• Any data set can be rationalized by assuming utility is
constant and setting E (A) = C (A) for all A



A Testable Model of Choice with Consideration Sets

• In order to be able to test the consideration set model we
need to do (at least) one of two things

• Put more structure on the way consideration sets are formed
• Enrich the data we use to test the model

• Will start by studying an approach that does a little bit of
both.



Satisficing as Optimal Stopping

• Satisficing model (Simon 1955) was an early model of
consideration set formation

• Very simple model:
• Decision maker faced with a set of alternatives A
• Searches through this set one by one
• If they find alternative that is better than some threshold, stop
search and choose that alternative

• If all objects are searched, choose best alternative

• Proved extremely influential in economics, psychology and
ecology



Satisficing as Optimal Stopping

• Usually presented as a compelling description of a ‘choice
procedure’

• Can also be derived as optimal behavior as a simple sequential
search model with search costs

• Primitives
• A set A containing M items from a set X
• A utility function u: X → R

• A probability distribution f : decision maker’s beliefs about the
value of each option

• A per object search cost k



The Stopping Problem

• At any point DM has two options

1 Stop searching, and choose the best alternative so far seen
(search with recall)

2 Search another item and pay the cost k

• Familiar problem from labor economics



Optimal Stopping

• Can solve for the optimal strategy by backwards induction
• Choice when there is 1 more object to search and current best
alternative has utility ū

1 Stop searching: ū − (M − 1)k
2 Search the final item:∫ ū

−∞
ūf (u)du +

∫ ∞

ū
uf (u)du −Mk



Optimal Stopping

• Stop searching if

ū − (M − 1)k ≤ ∫ ū

−∞
ūf (u)du +

∫ ∞

ū
uf (u)du −Mk

• Implying
k ≤

∫ ∞

ū
(u − ū) f (u)du

• Value of RHS decreasing in ū
• Implies cutoff strategy: search continues if ū > u∗ solving

k =
∫ ∞

u∗
(u − u∗) f (u)du



Optimal Stopping

• Now consider behavior when there are 2 items remaining
• ū < u∗ Search will continue

• Search optimal if one object remaining
• Can always operate continuation strategy of stopping after
searching only one more option

• ū > u∗ search will stop
• Not optimal to search one more item only
• Search will stop next period, as ū > u∗



Optimal Stopping

• Optimal stopping strategy is satisficing!
• Find u∗ that solves

k =
∫ ∞

u∗
(u − u∗) f (u)du

• Continue searching until find an object with u > u∗, then stop
• Model of underlying constrains allow us to make predictions
about how reservation level changes with environment

• u∗ decreasing in k
• increasing in variance of f (for well behaved distributions)
• Unaffected by the size of the choice set

• Comes from optimization, not reduced form satisficing model



Optimal Stopping - Extensions and Notes

• Satisficing as Framing
• Imagine you are provided with some ranking of alternatives
• You believe that this ranking is correlated (arbitrarily weakly)
with your preferences

• This is the only thing you know ex ante about each alternative.
(e.g. Google searches)

• What should your search order be?
• Should search in the same order as the ranking
• If list is long and correlation is low

• Ex ante difference in quality between the first and last
alternative is very low

• But you will never pick the last alternative!
• Satsificing is a knife edge case

• If one changes the problem
• Learning
• Varying information costs

• Then reservation level will change over time
• Testable prediction about the ‘satisficing’model



Optimal Stopping - Extensions and Notes

• Solubility
• The fact that we can solve this search problem depends on its
simple structure

• Things can get hairy very quickly
• Explore/exploit
• Multiple attributes

• There are some mathematical tools that can help
• Gittens indicies

• But often have to rely on arprroximate solutions
• e.g. Gabaix et al [2006]



Testing Satisficing: The Problem

• Satisficing models diffi cult to test using choice data alone
• If search order is fixed, behavior is indistinguishable from
preference maximization

• Define the binary relation D as x D y if
• x , y above satisficing level and x is searched before y
• x is above the satisficing level and y below it
• x , y both satisficing level and u(x) ≥ u(y )

• Easy to show that D is a complete preorder, and consumer
chooses as if to maximize D

• If search order changes between choice sets, then any behavior
can be rationalized

• Assume that all alternatives are above satisficing level
• Chosen alternative is then assumed to be the first alternative
searched.



Choice Process Data

• Need to either
• Add more assumptions
• Enrich the data

• Examples
• Search order observed from internet data [De los Santos,
Hortacsu, and Wildenbeast 2012]

• Stochastic choice data [Aguiar, Boccardi and Dean 2016]



Choice Process Data

• We will start by considering one possible data enrichment:
‘choice process’data

• Records how choice changes with contemplation time
• C (A): Standard choice data - choice from set A
• CA(t): Choice process data - choice made from set A after
contemplation time t

• Easy to collect such data in the lab
• Possible outside the lab using the internet?

• Has been used to
• Test satisficing model [Caplin, Dean, Martin 2012]
• Understand play in beauty contest game [Agranov, Caplin and
Tergiman 2015]

• Understand fast and slow processes in generosity [Kessler,
Kivimaki and Niederle 2016]



Notation

• How can we use choice process data to test the satisficing
model?

• First, introduce some notation:
• X : Finite grand choice set
• X : Non-empty subsets of X
• Z ∈ {Zt}∞

t : Sequences of elements of X
• Z set of sequences Z
• ZA ⊂ Z : set of sequences s.t. Zt ⊂ A ∈ X



A Definition of Choice Process

Definition
A Choice Process Data Set (X ,C ) comprises of:

• finite set X
• choice function C : X → Z

such that C (A) ∈ ZA ∀ A ∈ X

• CA(t): choice made from set A after contemplation time t



Characterizing the Satisficing Model

• Two main assumptions of the satisficing model of
consideration set formation

1 Search is alternative-based
• DM searches through items in choice set sequentially
• Completely understands each item before moving on to the
next

2 Stopping is due to a fixed reservation rule
• Subjects have a fixed reservation utility level
• Stop searching if and only if find an item with utility above
that level

• First think about testing (1), then add (2)



Alternative-Based Search (ABS)

• DM has a fixed utility function

• Searches sequentially through the available options,
• Always chooses the best alternative of those searched
• May not search the entire choice set



Alternative-Based Search

• DM is equipped with a utility function

u : X → R

• and a search correspondence

S : X → Z

with SA(t) ⊆ SA(t + s)
• Such that the DM always chooses best option of those
searched

CA(t) = arg max
x∈SA(t)

u(x)



Revealed Preference

• Key to testing the model is understanding what revealed
preference means in this setting

• This is true for many models of incomplete consideration
• Identify what behavior implies strict and weak revealed
preference

• Insist that these behaviors satisfy GARP
• Use this to construct utility orders and consideration sets

• Possible general theorem?



Revealed Preference and ABS

• What type of behavior reveals preference in the ABS model?
• Finally choosing x over y does not imply (strict) revealed
preference

• DM may not know that y was available

• Replacing y with x does imply (strict) revealed preference
• DM must know that y is available, as previously chose it
• Now chooses x , so must prefer x over y

• Choosing x and y at the same time reveals indifference
• Use �ABS to indicate ABS strict revealed preference
• Use ∼ABS to indicate revealed indifference



Characterizing ABS

• Choice process data will have an ABS representation if and
only if �ABS and ∼ABS can be represented by a utility
function u

x � ABSy ⇒ u(x) > u(y)

x ∼ ABSy ⇒ u(x) = u(y)

• Necessary and suffi cient conditions for utility representation
GARP

• Let �ABS=�ABS ∪ ∼ABS
• xT (�ABS )y implies not y �ABS x



Theorem 1

Theorem
Choice process data admits an ABS representation if and only if
�ABS and ∼ABS satisfy GARP
Proof.
(Sketch of Suffi ciency)

1 Generate U that represents �ABS

2 Set SA(t) = ∪ts=1CA(s)



Satisficing

• Choice process data admits an satisficing representation if
we can find

• An ABS representation (u, S)
• A reservation level ρ

• Such that search stops if and only if an above reservation
object is found

• If the highest utility object in SA(t) is above ρ, search stops
• If it is below ρ, then search continues

• Implies complete search of sets comprising only of
below-reservation objects



Revealed Preference and Satisficing

• Final choice can now contain revealed preference information
• If final choice is below-reservation utility

• How do we know if an object is below reservation?
• If they are non-terminal: Search continues after that object
has been chosen



Directly and Indirectly Non-Terminal Sets

• Directly Non-Terminal: x ∈ XN if
• x ∈ CA(t)
• CA(t) 6= CA(t + s)

• Indirectly Non Terminal: x ∈ X I if
• for some y ∈ XN
• x , y ∈ A and y ∈ limt→∞ CA(t)

• Let X IN = X I ∪ XN



Add New Revealed Preference Information

• If
• one of x ,y ∈ A is in X IN
• x is finally chosen from some set A when y is not,

• then, x �S y
• If x is is in X IN , then A must have been fully searched, and so
x must be preferred to y

• If y is in X IN , then either x is below reservation level, in which
case the set is fully searched, or x is above reservation utility

• Let �=�S ∪ �ABS



Theorem 2

Theorem
Choice process data admits an satisficing representation if and only
if � and ∼ABS satisfy GARP



Experiments and Bounded Rationality

• The experimental lab is often a good place to test models of
bounded rationality

• Pros
• Easy to identify choice mistakes
• Can collect precisely the type of data you need
• Can control the parameters of the problem

• Cons
• Lack of external validity?

• A good approach (and good dissertation!) is to combine
• Theory
• Lab experiments
• Field experiments/non experimental data



Experimental Design

• Experimental design has two aims
• Identify choice ‘mistakes’
• Test satisficing model as an explanation for these mistakes

• Two design challenges
• Find a set of choice objects for which ‘choice quality’is
obvious but subjects do not always choose best option

• Find a way of eliciting ‘choice process data’

• We first test for ’mistakes’in a standard choice task...
• ... then add choice process data in same environment
• Make life easier for ourselves by making preferences directly
observable



Choice Objects

• Subjects choose between ‘sums’

four plus eight minus four

• Value of option is the value of the sum
• ’Full information’ranking obvious, but uncovering value takes
effort

• 6 treatments
• 2 x complexity (3 and 7 operations)
• 3 x choice set size (10, 20 and 40 options)

• No time limit



Size 20, Complexity 7



Results
Failure rates (%) (22 subjects, 657 choices)

Failure rate
Complexity

Set size 3 7
10 7% 24%
20 22% 56%
40 29% 65%



Results
Average Loss ($)

Average Loss ($)
Complexity

Set size 3 7
10 0.41 1.69
20 1.10 4.00
40 2.30 7.12



Eliciting Choice Process Data

1 Allow subjects to select any alternative at any time

• Can change selection as often as they like

2 Choice will be recorded at a random time between 0 and 120
seconds unknown to subject

• Incentivizes subjects to always keep selected current best
alternative

• Treat the sequence of selections as choice process data

3 Round can end in two ways

• After 120 seconds has elapsed
• When subject presses the ‘finish’button
• We discard any rounds in which subjects do not press ‘finish’



Stage 1: Selection



Stage 2: Choice Recorded



Do We Get Richer Data from Choice Process
Methodology?

978 Rounds, 76 Subjects

10 Options, Complexity 3 20 Options, Complexity 3 40 Options, Complexity 3
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Testing ABS

• Choice process data has ABS representation if �ABS is
consistent

• Assume that more money is preferred to less
• Implies subjects must always switch to higher-valued objects
(Condition 1)

• Calculate Houtman-Maks index for Condition 1
• Largest subset of choice data that is consistent with condition



Houtman-Maks Measure for ABS
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Traditional vs ABS Revealed Preference

Traditional ABS
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Satisficing Behavior
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Estimating Reservation Levels

• Choice process data allows observation of subjects
• Stopping search
• Continuing to search

• Allows us to estimate reservation levels
• Assume that reservation level is calculated with some noise at
each switch

• Can estimate reservation levels for each treatment using
maximum likelihood



Estimated Reservation Levels

Complexity
Set size 3 7
10 9.54 (0.20) 6.36 (0.13)
20 11.18 (0.12) 9.95 (0.10)
40 15.54 (0.11) 10.84 (0.10)



Estimating Reservation Levels

• Increase with ‘Cost of Search’
• In line with model predictions

• Increase with size of choice set
• In violation of model predictions

• See Brown, Flinn and Schotter [2011] for further insights



Masatlioglou et. al. [2012]

• Model choice with consideration sets using standard choice
data

• Add an additional assumption to make consideration set
model testable

E (S/x) = E (S) if x /∈ E (S)

• Removing an item that is not in the consideration set does
not affect the consideration set

• Allows the researcher to identify objects that were in the
consideration set, and preferences

x 6= y = C (S) 6= C (S/x)

implies
• x was in E (S)
• y is strictly preferred to x

• Leads to testable predictions



De los Santos et al [2012]

• Use data from internet search engines on book purchases

• Makes visible what was searched not just what was chosen
• People often do not search all available sellers

• Use this to derive testable predictions of the satisficing model
• Chosen item should be the last item searched, unless search is
complete

• Search should be more likely to stop after a high value (low
price) alternative

• Find evidence against the satisficing model
• Favor a model in which size of consideration set is fixed in
advance



Manzini and Mariotti [2014]

• Model choice with consideration sets using stochastic choice
data
• p(a,A): probability of alternative a chosen from set A

• Assume that every alternative has a fixed, strictly positive
probability that it will be included in the consideration set
• There is a default alternative which is always considered

• As usual, chosen item is the highest utility alternative in the
consideration set.

• Allows preferences to be identified

p(a,A/b)
p(a,A)

> 1⇔ u(b) > u(a)

• Provides testable predictions: e.g.

p(a,A/b)
p(a,A)

> 1⇒ p(b,A/a)
p(b,A)

= 1



Abaluck and Adams [2017]

• There is also a significant literature on this in consumer
choice/IO

• Recent example is Abaluck and Adams [2017]
• Also surveys previous literature

• Consideration sets can lead to violations of Slutsky
Symmetry
• Absent income effects the following should be equal

• The impact of a price change in good j on demand for good i
• The impact of a price change of good i on demand for good j



Abaluck and Adams [2017]

• Simple example:
• Two products, 0 and 1
• xj price of good j
• 0 is default - always observed
• 1 is alternative - whether it is looked at depends on the price
of 0

• µ(x0) probability that good 1 will be looked at give x0



Abaluck and Adams [2017]

• s∗i (x0, x1) probability of buying good i given prices if both
are observed
• Derived from maximizing a quasilinear utility function
• Probabalistic due to some random utility component

• si (x0, x1) probability that good i is chosen:

s0(x0, x1) = (1− µ(x0)) + µ(x0)s∗0 (x0, x1)

s1(x0, x1) = µ(x0)s∗1 (x0, x1)

• Claim: with quasi-linear utility and no outside option

∂s∗0 (x0, x1)
∂x1

=
∂s∗1 (x0, x1)

∂x0



Abaluck and Adams [2017]

• What if consideration is imperfect?

∂s0(x0, x1)
∂x1

= µ(x0)
∂s∗0 (x0, x1)

∂x1
∂s1(x0, x1)

∂x0
=

∂µ(x0)
∂x0

s∗1 (x0, x1) + µ(x0)
∂s∗1 (x0, x1)

∂x0

impying

∂s1(x0, x1)
∂x0

− ∂s0(x0, x1)
∂x1

=
∂µ(x0)

∂x0
s∗1 =

∂ ln µ(x0)
∂x0

s1

∂ ln µ(x0)
∂x0

=
1
s1

[
∂s1(x0, x1)

∂x0
− ∂s0(x0, x1)

∂x1

]
• Attention changes with prices if and only if Slutsky symmetry
is violated

• Level of attention can be identified by integrating this
expression



Summary

• There is good evidence that people do not look at all the
available alternatives when making a choice
• Lab experiments
• Internet search
• Verbal reports
• Direct observation of search

• Pure consideration set models cannot be tested on choice
data alone

• Need either more data or more assumptions
• A variety of both approaches have been applied in the
literature
• Choice process
• Internet search
• Stochastic choice

• As yet, no real consensus on what is the correct model of
consideration set formation
• Though we do have some hints.
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