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The Story So Far.....

• (Hopefully) convinced you that attention costs are important
• Introduced the concept of consideration sets

• Along with sequential search and satisficing

• Showed that the model did a reasonable job in some
circumstances

• But, there is something restrictive about consideration sets
• Items are either in the consideration set and fully understood
• Or outside the consideration set, and nothing is learned

• Seems like a good model for choice over a large number of
simple alternatives

• Not for a small number of complex alternatives



A Non-Satisficing Situation



A Non-Satisficing Situation

Act Payoff 47 red dots Payoff 53 red dots
a 20 0
b 0 10



Set Up

• Objective states of the world
• e.g. Demand could be ’good’, ’medium’or ’bad’

• Decision maker chooses an action
• e.g. Set price to be high, medium, or low

• Gross payoff depends on action and state
• e.g. Quantity sold depends on price and demand

• Decision maker get to learn something about the state before
choosing action

• e.g. Could do market research, focus groups, etc.

• Can choose what to learn conditional on the problem



The Choice Problem

• The specifics of the process of information acquisition may be
very complex

• We model the choice of information in an abstract way
• The decision maker chooses an information structure

• Set of signals to receive
• Probability of receiving each signal in each state of the world

• Choose action conditional on signal received
• Value of strategy given by

• Expected value of actions taken given posterior beliefs
• Minus cost of information

• Notice that this is an optimizing model with additional
constraints

• Subjects respond to costs and incentives
• At least an interesting benchmark



The Choice Problem
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Set Up

• Note that most ‘real world’information gathering activities
can be thought of in terms of as generating information
structures

• E.g., say that you have developed a new economics class
• There are two possible states of the world

• Class is good - 23 of people like it on average
• Class is bad - 13 of people like it on average

• Each is equally likely
• Release a survey in which all 6 members of the class report if
they like the class or not

• This generates an information structure
• 7 signals: 0,1,2..... people say they like the class
• Probability of each signal given each state of the world can be
calculated



Set Up

• Ω: Objective states of the world (finite)
• with prior probabilities µ

• a : An action - utility depends on the state
• U(a,ω) utility of action a in state ω
• A: Set of actions:

• A ⊂ A: Decision problem (finite)



The Model

• For each decision problem

1 Choose information structure (π)

• Defined by:
• Set of signals: Γ(π)
• Probability of receiving each signal γ from each
state ω : π(γ|ω)

2 Choose action conditional on signal received (C )

• C (γ) probability distribution over actions given
signal γ

• In order to maximize
• Expected value of actions taken given posterior beliefs
• Minus cost of information K

∑
Ω

µ(ω) ∑
γ∈Γ(π)

π(γ|ω)
(

∑
a∈A

C (a|γ)U(a(ω))
)
−K (µ,π)



The Value of An Information Structure

• What is the value of an information structure?
• In the end you will have to choose an action

• Defined by the outcome it gives in each state of the world

• Assume in previous example, could choose three actions
• set price H, A or L

• The following table could describe the profits each price gives
at each demand level

Price
State H A L
G 10 3 1
M 1 2 1
B -10 -3 -1



The Value of An Information Structure

• What would you choose if you gathered no information?
• i.e. if you had your prior beliefs

µ(G ) =
1
6
, µ(M) =

1
2
, µ(B) =

1
3

• Calculate the expected utility for each act

1
6
u(H,G ) +

1
2
u(H.M) +

1
3
u(H,B) =

−7
6

1
6
u(A,G ) +

1
2
u(A,M) +

1
3
u(A,B) =

1
2

1
6
u(L,G ) +

1
2
u(L,M) +

1
3
u(L,B) =

1
3

• Choose A
• Get utility 1

2



The Value of An Information Structure

• What would you choose upon receiving signal γ1?

• Depends on beliefs conditional on receiving that signal
• Can calculate this using Bayes Rule

P(G |γ1) =
P(G ∩ γ1)

P(γ1)

=
µ(G )π(γ1|G )

µ(G )π(γ1|G ) + µ(M)π(γ1|M) + µ(B)π(γ1|B)

=
1
6

1
6 +

1
4 + 0

=
2
5



The Value of An Information Structure

• We can therefore calculate posterior beliefs conditional on
signal R

P(G |γ1) =
2
5
= γ1(G )

P(M |γ1) =
3
5
= γ1(M)

P(B |γ1) = 0 = γ1(B)

• Where we use γ1(ω) to mean the probability that the state of
the world is ω given signal R



The Value of An Information Structure

• And calculate the value of choosing each act given these
beliefs

2
5
u(H,G ) +

3
5
u(H,M) =

23
5

2
5
u(A,G ) +

3
5
u(A,M) =

12
5

2
5
u(L,G ) +

3
5
u(L,M) =

2
5



The Value of An Information Structure

• If received signal γ1, would choose H and receive
23
5

• By similar process, can calculate that if received signal γ2

• Choose L and receive − 17
• Can calculate the value of the information structure as

P(γ1)
23
5
+ P(γ2)

−1
7

=

5
12
23
5
+
7
12
−1
7

=
11
6

• How much would you pay for this information structure?



The Value of An Information Structure

• Value of this information structure is 116
• Value of being uninformed is 12
• Would prefer this information structure to being uninformed if
cost is below 8

6

• Note that the value of an information structure depends on
the acts available

G (π,A) = ∑
γ∈Γ(π)

P(γ)g(γ,A)

g(γ,A) = max
a∈A ∑

ω∈Ω
γ(ω)u(a,ω)

• g(γ,A) value of receiving signal γ if available actions are A

• Highest utility achievable given the resulting posterior beliefs



Aim

• Easy to calculate the value of an information structure

G (A,π)

= max
C :Γ(π)→∆(A)

∑
Ω

µ(ω) ∑
γ∈Γ(π)

π(γ|ω)
(

∑
a∈A

C (a|γ)U(a,ω)
)

• Assuming you know utility
• But what is the correct information processing technology?

• Choose variance of normal signal (e.g. Verrecchia 1982)?
• Shannon mutual information costs (e.g. Sims 1998)?
• Choose from set of available partitions (e.g. Ellis 2012)?
• Sequential search (e.g. McCall 1970)?

• As usual, have two possible approaches
1 Make further assumptions
2 Ask if there is any cost function that can explain the data

• Today we take approach 2
• Next week we will follow approach 1



A Caveat

• We will assume throughout that costs are additively separable
from utilities

• Is this assumption restrictive?
• Yes - see Chambers, Christopher P., Ce Liu, and John
Rehbeck. "Nonseparable Costly Information Acquisition and
Revealed Preference.”

• Can you think of cases in which non-separability might be an
important feature?



Data

• Let D be a collection of decision problems
• What could we observe?
• Standard choice data

• C (A): what is chosen from A

• Stochastic choice data
• PA(a): probability of choosing alternative a

• State dependent stochastic choice data PA
• PA(a|ω) probability of choosing action a conditional on state

ω

• Also assume we observe:
• Prior probabilities µ
• Utilities U

• Do not observe
• Information structures πA
• Subjective signals γ
• Information costs K



An Experimental Example

• Subjects presented with 100 balls
• State is determined by the number of red balls
• Prior distribution of red balls known to subject



An Experimental Example

Action Payoff 49 red balls Payoff 51 red balls
a 10 0
b 0 10

• No time limit: trade off between effort and financial rewards



An Experimental Example

• Data: State dependant stochastic choice
• Probability of choosing each action in each objective state of
the world

Action State = 49 red balls State = 51 red balls
Prob choose a P(a|49) P(a|51)
Prob choose b P(b|49) P(b|51)

• Observe subject making same choice 50 times
• Can use this to estimate PA

• But we will not be able to observe PA perfectly
• Will only be able to make probabilistic statements

• Can collect this type of data in the lab
• What about outside?



Question

• What type of stochastic choice data {D,P} is consistent with
optimal information acquisition?

• i.e. there exists a cost function K
• For each decision problem A ∈ D an information structure πA
and choice function CA s.t.

• CA is optimal for each γ
• πA is optimal given K
• CA and πA are consistent with PA

PA(a|ω) = ∑
γ∈Γ(πA)

πA(γ|ω)CA(a|γ).

• What ‘mistakes’are consistent with optimal behavior in the
face of information costs?



Notes

• This approach is very flexible
• No in principle restriction on information structures
• No restrictions on costs

• Nests other models of information acquisition
• e.g. Shannon Mutual Information set costs to

K (π) = λE
(
log

µ(ω)π(γ|ω)
µ(ω)π(γ)

)
• Can mimic a hard constraints

• e.g. a model in which subjects choose the variance of a normal
signal, set the cost of all other information structures to ∞



Observing Information Structures

• Key observation: State dependent stochastic choice data tells
us a lot about the information structure a decision maker has
used

• Assume that decision maker is ‘well behaved’
• Chooses each action in response to at most one signal
• No mixed strategies - one action per signal

• Information structure can be observed directly from state
dependent stochastic choice

• For each chosen action a there is an associated signal γ̄a

• Probability of signal γ̄a in state ω is the same as the
probability of choosing a in ω

π̄(γ̄a |ω) = P(a|ω)

• Call π̄ the ‘revealed information structure’



Recovering Attention Strategy



Observing Attentional Strategies

• What if decision maker is not well behaved?
• Chooses some act in more than one subjective state
• Mixed strategies - more than one act in an subjective state



Same Act in Different States



Mixing



Observing Information Structures

• Can still recover revealed information structure π̄
• Not necessarily the same as true information structure π
• But will be a garbling of the true information structure

• i.e. π is statistically suffi cient for π̄

• There exists a stochastic |Γ(π)| × |Γ(π̄)| matrix B such that
if we
• Apply π
• For each state γi move to state γ̄j with probability B ij

• We obtain π̄

• i.e.

∑
j
B ij = 1 ∀ j

π̄(γ̄j |ω) = ∑
i
B ijπ(γi |ω) ∀ j

• Intuition: SDSC data cannot be more informative than the
signal that created it



An Aside: Blackwell’s Theorem

• Recall G (A,π) is the gross value of using information
structure π in decision problem A

G (A,π)

= max
C :Γ(π)→∆(A)

∑
Ω

µ(ω) ∑
γ∈Γ(π)

π(γ|ω)
(

∑
a∈A

C (a|γ)U(a(ω))
)

• An information structure π is suffi cient for information
structure π′ if and only if

G (A,π) ≥ G (A,π′) ∀ A



Observing Information Structures

• π̄ may not be the agent’s true information structure

• But the true information structure π must be suffi cient for π̄
• π will be at least as valuable as π̄ in any decision problem

• Turns out that this is all we need



Characterizing Rational Inattention

• Choice of act optimal given attentional strategy

• Choice of attention strategy optimal



Characterizing Rational Inattention

• Choice of act optimal given attentional strategy

• Choice of attention strategy optimal



Optimal Choice of Action

• We need to ensure that the DM is making optimal choices
conditional on the information the recieved

• Note that this is a property required of many models outside
the RI class as well



Optimal Choice of Action

Action Payoff 49 red balls Payoff 51 red balls
a1 20 0
b1 0 10

Prior: {0.5, 0.5}

Action State = 49 red balls State = 51 red balls
Prob choose a 1

2
1
3

Prob choose b 1
2

2
3



Optimal Choice of actions

• Posterior probability of 49 red balls when action b was chosen

Pr(ω = 49|b chosen) = Pr(ω = 49, b chosen)
Pr(b chosen)

=
1
4

1
4 +

2
6

=
3
7

• But for this posterior

3
7
U(a(49)) +

4
7
U(a(51)) =

3
7
20+

4
7
0 = 8.6

3
7
U(b(49)) +

4
7
U(b(51)) =

3
7
0+

4
7
10 = 5.7



Condition 1

• To avoid such cases requires

a ∈ argmax
a∈A ∑

Ω
Pr(ω|a)U(a(ω))

• Which implies

Condition 1 (No Improving Action Switches) For every chosen
action a

∑ µ(ω)PA(a|ω) [u(a(ω))− u(b(ω))] ≥ 0.

for all b ∈ A

• If π̄ not true information structure, condition still holds

• a optimal at all posteriors in which it is chosen
• Must also be optimal at convex combination of these posteriors



Characterizing Rational Inattention

• Choice of act optimal given attentional strategy

• Choice of attention strategy optimal



Optimal Choice of Attention Strategy
Decision Problem 1

Action Payoff 49 red balls Payoff 51 red balls
a1 10 0
b1 0 10

Prior: {0.5, 0.5}

Action State = 49 red balls State = 51 red balls
Prob choose a 3

4
1
4

Prob choose b 1
4

3
4



Optimal Choice of Attention Strategy
Decision Problem 2

Action Payoff 49 red balls Payoff 51 red balls
a2 20 0
b2 0 20

Prior: {0.5, 0.5}

Action State = 49 red balls State = 51 red balls
Prob choose a 2

3
1
3

Prob choose b 1
3

2
3



Optimal Choice of Attention Strategy

• G (A,π) is the gross value of using information structure π in
decision problem A

G π̄1 π̄2

{a1, b1} 7 12 6 23
{a2, b2} 15 1313

• Cost function must satisfy

G ({a1, b1},π1)−K (π1) ≥ G ({a1, b1},π2)−K (π2)
G ({a2, b2},π2)−K (π2) ≥ G ({a2, b2},π1)−K (π1)

• Which implies
5
6
= G ({a1, b1},π1)− G ({a1, b1},π2) ≥

K (π1)−K (π2) ≥

G ({a2, b2},π1)− G ({a2, b2},π2) = 12
3



Optimal Choice of Attention Strategy

• Surplus must be maximized by correct assignments

G ({a1, b1},π1) + G ({a2, b2},π2)
≥ G ({a1, b1},π2) + G ({a2, b2},π1)

• What if π̄ 6= π?

• We know that revealed and true information structure must
give same value in DP it was observed

G (Ai , π̄i ) = G (Ai ,πi )

• Also, as π weakly Blackwell dominates π̄

G (Ai , π̄j ) ≤ G (Ai ,πj )
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• Surplus must be maximized by correct assignments
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Optimal Choice of Attention Strategy

• Surplus must be maximized by correct assignments

G ({a1, b1}, π̄1) + G ({a2, b2}, π̄2)
≥ G ({a1, b1}, π̄2) + G ({a2, b2}, π̄1)

• What if π̄ 6= π?

• We know that revealed and true information structure must
give same value in DP it was observed

G (Ai , π̄i ) = G (Ai ,πi )

• Also, as π weakly Blackwell dominates π̄

G (Ai , π̄j ) ≤ G (Ai ,πj )



Condition 2

• To guarantee the existence of a cost function requires a
stronger condition

Condition 2 (No Improving Attention Cycles) For an observed
sequence of decision problems A1...AK and
associated revealed information structures π̄1...π̄K

G (A1, π̄1)− G (A1, π̄2)
+G (A2, π̄2)− G (A2, π̄3)
+...

+G (AK , π̄K )− G (AK , π̄1)
≥ 0

• Note that this condition relies only on observable objects



Theorem 1

Theorem
For any data set {D,P} the following two statements are
equivalent

1 {D,P} satisfy NIAS and NIAC
2 There exists a K : Π→ R,

{
πA
}
A∈D and

{
CA
}
A∈D such

that πA and CA : Γ
(
πA
)
→ A are optimal and generate PA

for every A ∈ D

Proof.
2→ 1 Trivial
1→ 2 Rochet [1987] (literature on implementation)



Proof

• This problem is familiar from the implementation literature

• Say there were a set of environments X1....XN and actions
B1....BM such that the utility of each environment and each
state is given by

u(Xi ,Bj )

• Say we want to implement a mechanism such that action
Y (Xi ) is taken at in each environment.

• We need to find a taxation scheme τ : B1....BM → R such
that

u(Xi ,Y (Xi ))− τ(Y (Xi )) ≥ u(Xi ,B)− τ(B)

∀ B1....BM

• This is the same as our problem.



Proof

• Our problem is equivalent to finding θ : D → R, such that,
for all Ai , Aj ∈ D

G (Ai ,πi )− θ(Ai ) ≥ G (Ai ,πj )− θ(Aj )

• Just define K (π) = θ(Ai ) if π = πi for some i , or = ∞
otherwise

• We can apply a proof from Rockerfellar [1970] to show that
NIAC gives us this condition



Proof

• Pick some arbitrary A0 and define

T (A) = sup
all chains A0 to A=AM

M−1
∑
n=0

G (Ai+1,πi )− G (Ai ,πi )

• NIAC implies that T (A0) = 0
• Also note that

T (A0) ≥ T (Ai ) + G (A0,πi )− G (Ai ,πi )

• So T (Ai ) is bounded



Proof

• Furthermore, for any Ai Aj we have

T (Ai ) ≥ T (Aj ) + G (Ai ,πj )− G (Aj ,πj )

• So, setting θ(Aj ) = G (Aj ,πj )− T (Aj ), we get

G (Ai ,πi )− θ(Ai ) ≥ G (Ai ,πj )− θ(Aj )



Costs and Blackwell Ordering

• So far we have been completely agnostic about the cost
function

• Perhaps we want to impose some more structure
• e.g. information structure that are more (Blackwell)
Informative are (weakly) more expensive

• Turns out we get this ‘for free’
• Say we observe πA in A and πB in B such that πA is
suffi cient for πB

• It must be the case that

G (B,πB )−K (πB ) ≥ G (B,πA)−K (πA)⇒
K (πA)−K (πB ) ≥ G (B,πA)− G (B,πB )

• But by Blackwell’s theorem

G (B,πA) ≥ G (B,πB )



Restrictions on the Cost Function

• Any behavior that can be rationalized can be rationalized with
a cost function that

• Is weakly monotonic with respect to Blackwell?
• Allows mixing
• Positive with free inattention

• Reminiscent of Afriat’s theorem
• Can also extend to ‘sequential rational inattention’



Recovering Costs

• Say π̄A is the revealed attn. strategy in decision problem A.
• Assuming weak monotonicity, it must be that

K (π̄A)−K (π) ≤ G (A, π̄A)− G (A,π)

• If π̄B is used in decision problem B then we can bound
relative costs

G (B, π̄A)−G (B, π̄B ) ≤ K (π̄A)−K (π̄B ) ≤ G (A, π̄A)−G (A, π̄B )

• Tighter bounds can be obtained using chains of observations

max
{A1...An∈D |A1=B ,An=A}

∑
[
G (Ai , π̄A

i
)− G (Ai , π̄Ai+1)

]
≤ K (π̄A)−K (π̄B )
≤ min

{A1...An∈D |A1=A,An=B}
∑
[
G (Ai , π̄A

i
)− G (Ai , π̄Ai+1)

]



What If Utility and Priors Are Unobservable?

• Can add ‘there exists’to the statement of the NIAS and NIAC
conditions

• Data has an optimal costly attention representation if there
exists µ ∈ ∆(Ω) and U : X → R such that

• NIAS is satisfied
• NIAC is satisfied

• If µ is known but U is unknown, conditions are linear and
(relatively) easy to check

• If µ and U are unknown, conditions are harder to check

• Still not vacuous

• Alternatively, can enrich data so that these objects can be
recovered



Rational Inattention vs Random Utility

• Alternative model of random choice: Random Utility

1 Agent receives some information about the state of the world
2 Draws a utility function from some set
3 Chooses in order to maximize utility given information

• Key differences between Random Utility and Rational
Inattention

1 Random Utility allows for multiple utility functions
2 Rational Inattention allows attention to vary with choice
problem

• How can we differentiate between the two?



Monotonicity

• Random Utility implies monotonicity

• In fact, fully characterized by Block Marschak monotonicity

• For any two decision problems {A,A∪ b}, a ∈ A and b /∈ A

PA(a|ω) ≥ PA∪b(a|ω)

• Rational Inattention can lead to violations of monotonicity
(Ergin, Matejka and McKay)

Act Payoff 49 red dots Payoff 51 red dots
a 23 23
b 20 25
c 40 0

• Adding act c to {a, b} can increase the probability of
choosing b in state 51



Experimental Results

• Introduce an experimental interface that can be used to
collect state dependent stochastic choice data

• Use it to perform some basic tests

• Whether subjects actively adjust their attention
• Whether they do so optimally
• Measure attention costs

• Rule out alternative models with fixed attention
• Signal Detection Theory
• Random Utility Models

• Experimental note: subjects paid in probability points to keep
utility ‘linear’



An Aside: Testing Axioms with Stochastic Data

• Much of the following is going to come down to testing
axioms of the following form

P(a|1) ≥ P(a|2)

• These are conditions on the population probabilities
• We don’t observe these, instead we observe sample estimates
P̄(a|1) and P̄(a|2)

• What to do?



An Aside: Testing Axioms with Stochastic Data

• We can make statistical statements about the validity of the
axioms

• But there are two was to do this
1 Can we reject a violation of the axiom

• i.e., is it the case that P̄(a|1) > P̄(a|2) and we can reject the
hypothesis that P(a|1) = P(a|2) at (say) the 5% level

2 Can we find a significant violation of the axiom

• i.e. is it the case that P̄(a|1) < P̄(a|2) and we can reject the
hypothesis that P(a|1) = P(a|2) at (say) the 5% level

• (1) Is clearly a much tougher test that (2)
• If we have low power we will never be able to do (1)



Experimental Results

• Experiment 1: Extensive Margin
• Experiment 2: Spillovers
• Experiment 3: Intensive Margin



Experiment 1: Extensive Margin

Experiment 2
Decision Payoffs
Problem U(a, 1) U(a, 2) U(b, 1) U(b, 2)
1 5 0 0 5
2 40 0 0 40
3 70 0 0 70
4 95 0 0 95

• Two equally likely states
• Two acts (a and b)
• Symmetric change in the value of making correct choice
• 46 subjects



Testing NIAC and NIAS

• In the symmetric 2x2 case, NIAS and NIAS have specific
forms

• NIAS:

PA(a|ω1) ≥ max {αPA(a|ω2), αPA(a|ω2) + β} , (1)

where

α =
u(b(ω2))− u(a(ω2))

u(a(ω1))− u(b(ω1))

β =
u(a(ω1)) + u(a(ω2))− u(b(ω1))− u(b(ω2))

(a(ω1))− u(b(ω1))

• In this case boils down to

P(a|ω1) ≥ P(a|ω2)



Testing NIAC and NIAS

• NIAC:

∆P(a|ω1) (∆ (u(a(ω1))− u(b(ω1)))) + (2)

∆P(b|ω2) (∆ (u(b(ω2))− u(a(ω2)))) (3)

≥ 0 (4)

• In this case boils down to

P1(a|ω1) + P1(b|ω2)

≤ P2(a|ω1) + P2(b|ω2)

≤ P3(a|ω1) + P3(b|ω2)

≤ P4(a|ω1) + P4(b|ω2)



Do People Optimally Adjust Attention?

• Alternative model: Choose optimally conditional on fixed
signal

• e.g. Signal detection theory [Green and Swets 1966]

• In general, choices can vary with incentives
• Changes optimal choice in posterior state

• But not in this case
• Optimal to choose a if γ1 > 0.5, regardless of prize

• Change in choice between decision problems rules out Signal
Detection Theory

• Also rational inattention with fixed entropy



Testing NIAS: Experiment 1

• NIAS test: For each decision problem

P(a|1) ≥ P(a|2)

• From the aggregate data

Table 2: NIAS Test

DP Pj (a|1) Pj (a|2) Prob

1 0.74 0.40 0.000

2 0.76 0.34 0.000

3 0.78 0.34 0.000

4 0.78 0.27 0.000



Testing NIAC: Experiment 1



NIAC And NIAS: Individual Level

Violate %
NIAS Only 2
NIAC Only 17
Both 0
Neither 81

• Counting only statistically significant violations



Recovering Costs - Individual Level



Experiment 2: Spillovers

Table 1: Experiment 1

Payoffs

DP U(a, 1) U(a, 2) U(b, 1) U(b, 2) U(c, 1) U(c, 2)
1 50 50 b1 b2 n/a n/a

2 50 50 b1 b2 100 0

Table 2: Treatments for Exp. 1

Treatment Payoffs

b1 b2
1 40 55

2 40 52

3 30 55

4 30 52



Experiment 2: Spillover

Table 8: Results of Experiment 1

P(b|1) P(b|2)
Treat N {a, b} {a, b, c} Prob {a, b} {a, b, c} Prob

1 7 2.9 6.8 0.52 50.6 59.8 0.54

2 7 5.7 14.7 0.29 21.1 63.1 0.05

3 7 9.5 5.0 0.35 21.4 46.6 0.06

4 7 1.1 0.8 0.76 19.9 51.7 0.02

Total 28 4.8 6.6 0.52 28.3 55.6 <0.01



Experiment 3: Intensive Margin

Experiment 3
Payoffs

Decision Problem Ua1 Ua2 Ua3 Ua4 Ub1 Ub2 Ub3 Ub4
9 1 0 10 0 0 1 0 10
10 10 0 1 0 0 10 0 1
11 1 0 1 0 0 1 0 1
12 10 0 10 0 0 10 0 10

• 4 states of the world: 29, 31, 69, 71 red balls
• Change which states it is important to differentiate between



Testing NIAC: Experiment 3

Experiment 3
Payoffs

Decision Problem Ua1 Ua2 Ua3 Ua4 Ub1 Ub2 Ub3 Ub4
9 1 0 10 0 0 1 0 10
10 10 0 1 0 0 10 0 1

• Comparing DP 9 and 10
• DP9: important to differentiate between states 3 and 4
• DP10: important to differentiate between states 1 and 2

P10(a|ω1) + P10(b|ω2) + P9(a|ω3) + P9(b|ω4)
≥ P9(a|ω1) + P9(b|ω2) + P10(a|ω3) + P10(b|ω4)

• Average LHS: 73%, Average RHS: 65% (24 subjects)

• Overall 79% of subjects in line of NIAC



Summary

• These are clearly extremely simple experimental tests
• A lot more work to be done

• identifying where people are optimal and where they are not
• identifying types of mistakes that they are making
• measuring costs.



Other Approaches

• There are lots of other papers testing the rational inattention
hypothesis for specific cost functions:

• Shannon mutual information (e.g. Sims 2003)
• Shannon capacity (e.g. Woodford 2012)
• Choice of optimal partitions (Ellis 2012)
• All or nothing (Reis 2006)

• We will talk (in particular) about mutual information next
week.



de Oliveira et al [2017]

• One other paper considers optimal information acquisition
without making any assumption about the cost functions

• Rather than state dependant stochastic choice data, uses
preferences over menus

• i.e would you prefer to make a choice for menu A or menu B

• Timeline is as follows
• Choose between menu
• State resolves itself
• Choose what information processing to do
• Choose an alternative based on signal



de Oliveira et al [2017]

• Two key conditions for rational inattention

1 Preference for Flexibility
• A∪ {a} � A
• Always prefer to have more options
• Note relation to ‘too much choice’

2 Preference for Early Resolution of Uncertainty
• Define 12 mixture of A and B as{

c =
1
2
a+

1
2
b|a ∈ A, b ∈ B

}
• Choosing from 1

2A+
1
2B is like choosing from A, choosing

from B then flipping a coin to see which choice you get
• This is costly from an informational standpoint

A ∼ B ⇒
A � 1

2
A+

1
2
B



Summary

• Introduced ‘Rational Inattention’
• A class of models in which it is costly to learn about the state
of the world

• Introduced ‘State Dependent Stochastic Choice data’
• A handy data set for testing models of rational inattention

• Introduced an experimental method for collecting SDSC
• Very early stage in the research program, lots of open
questions

• Many other experiments to be run
• SDSC data in the wild
• Link between menu choice and stochastic choice
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