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Rational Inattention and Shannon Information Costs

• We have so far considered what we can say when we are
agnostic about information costs

• We now move consider behavior under a specific assumed cost
for information

• Based on the concept of Shannon Entropy
• Extremely popular in the applied literature
• Consider this the ‘Cobb Douglas’case to last week’s ‘revealed
preference’treatment

• Long history of research in information theory
• Quite a lot is known about how these costs behave
• Cover and Thomas is a great resource



Shannon Entropy

• Shannon Entropy is a measure of how much ‘missing
information’there is in a probability distribution

• In other words - how much we do not know, or how much we
would learn from resolving the uncertainty

• For a random variable X that takes the value xi with
probability p(xi ) for i = 1...n, defined as

H(X ) = E (− ln(p(xi ))
= −∑

i
p(xi ) ln(pi )



Shannon Entropy

• Can think of it as how much we learn from result of
experiment



Justification for Shannon Entropy

• Say we want our measure of entropy to have the following
features

• Depends only on the probability distribution
• H(X ) = H(p)
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Justification for Shannon Entropy

• Say we want our measure of entropy to have the following
features

• Depends only on the probability distribution
• Maximized at a uniform probability distribution

• Unaffected by adding zero probability state
• H({p1....pM }) = H({p1....pM , 0})



Justification for Shannon Entropy

• Say we want our measure of entropy to have the following
features

• Depends only on the probability distribution
• Maximized at a uniform probability distribution

• Unaffected by adding zero probability state
• Additive

• H(X ,Y ) = H(X ) +∑x p(x)H(Y |x)
• How much you learn from observing X , plus how much you
additionally learn from observing Y

• Implies that the entropy of two independent variables is just
H(X ) +H(Y )

• ‘Constant returns to scale’assumption



Justification for Shannon Entropy

• Say we want our measure of entropy to have the following
features

• Depends only on the probability distribution
• Maximized at a uniform probability distribution

• Unaffected by adding zero probability state
• Additive
• Then Entropy must be of the form (Khinchin 1957)

H(X ) = −∑
i
p(xi ) ln(pi )

• Note, other entropies are available! e.g. Tsallis

k
q − 1 (1−∑

i
p(xi )q)



Entropy and Information Costs

• Related to the notion of entropy is the notion of Mutual
Information

I (X ,Y ) = ∑
x

∑
y
p(x , y) log

p(x , y)
p(x)p(y)

• Measure of how much information one variable tells you about
another

• Note that I (X ,Y ) = 0 if X and Y are independent



Entropy and Information Costs

• Note also that mutual information can be rewritten in the
following way

I (X ,Y ) = ∑
x

∑
y
p(x , y) log

p(x , y)
p(x)p(y)

= ∑
x

∑
y
p(x , y) log

p(x |y)
p(x)

= ∑
y

∑
x
p(x , y) lnP(x |y)−∑

x
∑
y
p(x , y) ln p(x)

= ∑
y
p(y)∑

x
p(x |y) lnP(x |y)−∑

y
p(x) ln p(x)

= H(X )− E (H(X |Y ))

• Difference between entropy of X and the expected entropy of
X once Y is known



Mutual Information and Information Costs

• Mutual Information between states and signals often used to
model information constraints

• Sims [2003] focused on a hard constraint on the amount of
entropy a DM can use

• We will start by focussing on the case of costs that are
linear in mutual information

K (µ,π) = λ(H(µ)− E (H(γ))

= λ

(
∑γ∈Γ(π) π(γ)∑Ω γ (ω) lnγ(ω)

−∑Ω µ(ω) ln µ (ω)

)
• For convenience use γ to refer to the posterior beliefs
generated by signal γ



Mutual Information and Information Costs

• Can be justified by information theory
• Say you are going to observe n repetitions of the state Ω (let

ωn be a typical element)

• You are allowed to send a message consisting of nR bits (R is
the rate)

• Decoded in order to generate n repetitions of the signal space
Γ (let γn be a typical element)

• Define d(ω,γ) be the loss associated with receiving signal γ
in state ω, and d̂(ωn,γn) = 1

n ∑ d(ωn
i ,γ

n
i )



Mutual Information and Information Costs

• Rate Distortion Theorem: Let R(D) be the minimal rate
needed to generate loss D as n→ ∞, then

R(D) = min
π∈Π

I (Ω, Γ) s.t. ∑
(γ,ω)

µ(x)π(γ|x)d(ω,γ) ≤ D

• Implies (assuming strict monotonicity)

min ∑
(γ,ω)

µ(x)π(γ|x)d(ω,γ) s.t. I (Ω, Γ) ≤ R(D)

• is equivalent to

min ∑
(γ,ω)

µ(x)π(γ|x)d(ω,γ) s.t. R ≤ R(D)

• See Cover and Thomas Chapter 10.



Shannon Entropy

• Key feature: Entropy is strictly concave
• So negative of entropy is strictly convex
• Say we choose a signal structure with two posteriors γ and γ′

• It must be that

P(γ)γ+ P(γ′)γ′ = µ

• so

P(γ)H(γ) + P(γ′)H(γ′) < H(P(γ)γ+ p(γ′)γ′)

= H(µ)

• So the cost of ‘learning something’is always positive



Solving Rational Inattention Models

• Solving the Shannon model can be diffi cult analytically
• Though easier than many other models

• General approach - ignore choice of information structure,
instead focus on joint distribution of choice variable and state

• i.e. choose state dependent stochastic choice directly
• Can do this because optimal strategy will always be ‘well
behaved’

• Each action taken in at most one state

• Example (Matejka and McKay 2015) - continuous state space,
finite action space

• We will talk about analytical approaches
• Alternative, algorithmic approaches
• e.g. Blahut-Arimotio algorithm
• See Cover and Thomas (page 191)



Solving Rational Inattention Models

• P set of all state contingent stochastic choice functions for
some state space Ω and set of acts A

• Remember P(a|ω) is the probability of choosing a in state ω

• Remember that, for P ∈ P , the mutual information between
choices a and objective state ω is given by

I (A,Ω) = H(A)−H(A|Ω)



Solving Rational Inattention Models

• Decision problem of agent is to choose P ∈ P to maximize

∑
a∈A

∫
ω
u(a(ω))P(a|ω)µ(dω)

−λ

[
∑
a∈A

∫
ω
P(a|ω) lnP(a|ω)µ(dω) + ∑

a∈A
P(a) lnP(a)

]

• Subject to
∑
a∈A

P(a|ω) = 1 Almost surely

• Where P(a) is the unconditional probability of choosing a
• Note another constraint which we will ignore for now

P(a|ω) ≥ 0 ∀ a,ω



The Lagrangian Function

∑
a∈A

∫
ω
u(a(ω))P(a|ω)µ(dω)

−λ

[
∑
a∈A

∫
ω
P(a|ω) lnP(a|ω)µ(dω) + ∑

a∈A
P(a) lnP(a)

]

−
∫

ω
ρ(ω)

[
∑
a∈A

P(a|ω)− 1
]

µ(dω)

• ρ(ω) Lagrangian multiplier on the condition that
∑a∈A P(a|ω) = 1

• FOC WRT P(a|ω) (assuming >0)

u(a(ω))− ρ(ω) + λ[lnP(a) + 1− lnP(a|ω)− 1] = 0

• Note that this is a convex problem



Solution

• FOC WRT P(a|ω) (assuming >0)

u(a(ω))− ρ(ω) + λ[lnP(a) + 1− lnP(a|ω)− 1] = 0

• Which gives

P(a|ω) = P(a) exp
u(a(ω))−ρ(ω)

λ

• Plug this into

∑
a′∈A

P(a′|ω) = 1

⇒ exp
ρ(ω)

λ = ∑
a′∈A

P(a′) exp
u(a′(ω))

λ

• Which in turn gives...



Comments

P(a|ω) = P(a) exp
u(a(ω))

λ

∑c∈A P(c) exp
u(c (ω))

λ

• Similar in form to logistic random choice

• If alternatives are ex ante identical, this is logistic choice
• Otherwise choice probabilities are ‘warped’by P(a) - which
contains information on the prior value of each option

• Important: note that P(a) is endogenous, not a parameter

• As costs go to zero, deterministically pick best option in that
state

• As costs go to infinity, deterministically pick the best option
ex ante



Comments

• The MM conditions ignore the constraint

P(a|ω) ≥ 0 ∀ a,ω

• Need to know which acts will be chosen with positive
probability

• Typically there will be many acts not chosen at the optimum
(Jung et al. 2015)

• There will be many solutions to the necessary conditions
• Ideally, would like necessary and suffi cient conditions



Necessary and Suffi cient Conditions

• Let z(a,ω) be ‘normalized utilities’

z(a,ω) = exp
{
u(a,ω)

λ

}
• Note that the MM conditions are

P(a|ω) = P(a)z(a,ω)

∑c∈A P(c)z(c ,ω)



Necessary and Suffi cient Conditions

Theorem
P is consistent with rational inattention with mutual information
costs if and only if

∑
ω

[
µ(ω)z(a,ω)

∑c∈A P(c)z(c,ω)

]
≤ 1 all a ∈ A

∑
ω

[
µ(ω)z(a,ω)

∑c∈A P(c)z(c,ω)

]
= 1 all a s.t. P(a) > 0

and

P(a|ω) = P(a)z(a,ω)
∑c∈A P(c)z(c,ω)

1 Identify correct unconditional choice probabilities
• Equality condition for chosen actions
• Check inequality condition for unchosen actions

2 Read off conditional choice probabilities using MM conditions



Example: Finding the Good Act

• Choose from a set of goods A = {a1, ..., aN}
• Only one of these goods is of high quality

• uh utility of the high quality good
• ul utility of the low quality good
• µi prior probability that good i is the high quality good
• WLOG assume µ1 ≥ µ2.... ≥ µN

• Common set up in many psychology experiments



Solution

• Cutoff strategy in prior probabilities: Exists c such that
• µi > c ⇒ i chosen with positive probability
• µi < c ⇒ i never chosen and nothing is learned about their
quality

• Endogenously form a ‘consideration set’

• Let δ =
exp( uhλ )
exp( ulλ )

− 1: ‘additional’utility from high act

• Search the best K alternatives, where K solves

µK >
∑K
k=1 µk
K + δ

≥ µK+1.



Consideration Set Formation

• Can use equality constraints to solve for unconditional choice
probabilities

P(ai ) =
µ(ωi )(K + δ)−∑K

k=1 µ(ωk )

δ ∑K
k=1 µ(ωk )

• MM conditions to solve for conditional choice probabilities

P(b|b = uh) =
P(b)δ

∑c∈A P(c)



Choice Probabilities - Example

• Exponential priors
• uh = 1, ul = 0



Features of the Solution

• ‘Consideration set’of alternatives chosen with positive
probability

• Mistakes even amongst alternatives in the consideration sets
• Ex ante probability of alternative being good conditional on
being chosen is same for all alternatives



Choice Probabilities - Example



Importance of Suffi cient Conditions

• The MM necessary conditions could be solved for many
possible ‘consideration sets’

• Choosing any option with probability 1 will solve the necessary
conditions

• For any set C with worst alternative µC̄ there is a solution to
the necessary conditions if

µC̄
∑k∈C µk

>
1

|C |+ δ
.

• Do no reference unchosen actions
• Do not determine whether higher utility could be obtained
with a different consideration sets

• This is the advantage of the suffi cient conditions



The Linear Quadratic Gaussian Case

• One case in which this problem becomes more tractable is if
the input and output signal are both normal

• The entropy of a normal variable X ∼ N(µ, σ2x ) is given by

H(Y ) =
1
2
ln(2πeσ2x )

• If Y and X are both normal, then

E (H(Y |X )) =
∫
x
f (x)

∫
y
f (y |x) ln f (y |x)d(y)d(x)

• As y |x is distributed normally with variance (1− ρ2)σ2y , this
becomes

E (H(Y |X )) =
∫
x
f (x)

1
2
ln(2πeσ2y |x )d(x)

=
1
2
ln(2πe(1− ρ2)σ2y )



The Linear Quadratic Gaussian Case

• As mutual information is given by

H(Y )− E (H(Y |X ))

=
1
2
ln(2πeσ2y )−

1
2
ln(2πe(1− ρ2)σ2y )

• In this case, the mutual information is given by
1
2
ln(1− ρ2)

• So information costs depend only on the covariance of the two
signals!

• It turns out that joint normality is optimal if the utility
function is quadratic in the relationship between the objective
and subjective state
• Choice of variance on some normally distributed error term

• However, note that some papers assume normality (this is
bad)



Set Up

• There is another way to approach this problem which possibly
gives more insight

• Assume we are choosing Q, a (simple) distribution over
posterior beliefs, with Q(γ) the probability of belief γ

• We can also work with a generalized cost function

∑
Γ
Q(γ)T (γ)− T (µ)

where T is some strictly convex function

• For example, we could replace Shannon entropy with other
types of entropy.

• Call this the class of ’posterior separable’cost functions



Set Up

• One way to gain insight into what is going on is to rewrite the
objective function

∑
Γ
Q(γ)

[
max
a∈A ∑

Ω
γ(ω)u(a,ω)

]
−
[
∑
Γ
Q(γ)T (γ)− T (µ)

]

= ∑
Γ
Q(γ)

[
max
a∈A ∑

Ω
γ(ω)u(a,ω)− T (γ)

]
+ T (µ)

= ∑
Γ
Q(γ)max

a∈A
Na(γ)

• Each γ and a has a net utility associated with it

NA(γ) = ∑
Ω

γ(ω)u(a,ω)− [T (γ)− T (µ)]

• Aim is to pick distribution of posteriors which maximizes the
expected value of net utilities subject to

∑
γ∈Γ(π)

Q(γ)γ = µ



Net Utility

• Consider a simple case with two states and two acts

Action Payoff in state 1 Payoff in state 2
a 10 0
b 0 10



Net Utility



Optimal Strategy

• What to find the posteriors which support the highest chord
above the prior

• The solution for every possible prior defined by the lower
epigraph of the concavified net utility function



Finding the Optimal Strategy

• Optimal posteriors identified by hyperplane that supports the
set of feasible net utilities.



Theorem

Theorem
Given decision problem (µ,A) ∈ Γ×F a set of posteriors are
rationally inattentive if and only if:

1 Invariant Likelihood Ratio (ILR) Equations for Chosen
Acts: given a, b ∈ B, and ω ∈ Ω,

γa(ω)

z(a(ω))
=

γb(ω)

z(b(ω))

2 Likelihood Ratio Inequalities for Unchosen Acts: given
act a chosen with positive probability and b ∈ A,

∑
ω∈Ω

[
γa(ω)

z(a(ω))

]
z(b(ω)) ≤ 1.



Behavioral Properties

• We have necessary and suffi cient conditions to characterize
the Shannon model

• But these do not necessarily help us understand the behaviors
that it predicts

• Might be helpful to have a more ‘behavioral’characterization



Posterior Separability

• Turns out that we can characterize using three behavioral
axioms

• Plus some technical ones that we won’t bother with

1 Separability

2 Locally Invariant Posteriors

3 Invariance Under Compression



Separability



Separability



Separability

• Separability states you can always do this
• For any set of chosen acts and associated posteriors
• Can switch out one posterior and replace it with another
posterior

• Changing only the associated act.



Locally Invariant Posterior

• Example: 2 states, 2 actions

Action Payoff in state 1 Payoff in state 2
f1 x 0
f2 0 x



Behavior at 0.5 Prior



Behavior for prior<a



Behavior for prior>a



Same Posteriors as for 0.5 prior



No Information Gathered



Locally Invariant Posteriors

• Locally Invariant posteriors: If a set of posteriors {γa}a∈A are
optimal for decision problem {µ,A} and are also feasible for
{µ′,A} then they are also optimal for that decision problem

• Choice probabilities move ‘mechanically’with prior to
maintain posteriors

• Useful in, for example, models in which consumers are
rationally inattentive to quality

• As the prior distribution of quality changes, posterior beliefs do
not

• See Martin [2014]



Invariance Under Compression

• The Shannon model is clearly ‘special’in many ways in the
class of UPS model

• The literature has noted many properties
• Symmetry
• Separability of Orthogonal Decisions
• Lack of Complementarities

• All of these properties can be captured in a single axiom
• Invariance Under Compression



Invariance Under Compression - An Example

• Consider decision problem (i)

State ω1 ω2

Prior Prob 0.5 0.5

Payoff Action A 10 0
Payoff Action B 0 10

• And now decision problem (ii) which splits ω2

State ω1 ω2 ω3

Prior Prob 0.5 0.2 0.3

Payoff Action A 10 0 0
Payoff Action B 0 10 10



Invariance Under Compression - An Example

• How should behavior change between the two decision
problems?

• In principal, many things could happen
• Could be harder to learn about two states that one, so less
accurate in (ii) than (i)

• Could be easier to learn about two states that one, so more
accurate in (ii) than (i)

• Shannon model says that behavior should not change
• Pi (a|ω2) = Pii (a|ω2) = Pii (a|ω3)



Behavioral Characterization

• Invariance under Compression formalizes this
• Defines the concept of a ’basic’decision problem

• No two states have the same payoff for all acts

• Every decision problem has associated basic forms

• Choice behavior the same when moving between decision
problems and their basic forms

• Corollaries
• Behavior the same in every state which is payoff equivalent
• Moving prior probabilities between payoff equivalent states
does not change behavior



Experimental Tests

• Locally Invariant Posteriors

• Invariant Likelihood Ratio and Response to Incentives

• Invariance Under Compression



Experimental Tests

• Locally Invariant Posteriors

• Invariant Likelihood Ratio and Response to Incentives

• Invariance Under Compression



Experiment

Table 1: Experiment
Decision Payoffs
Problem µ(1) U(a(1)) U(a(2)) U(b(1)) U(b(2))
1 0.50 10 0 0 10
2 0.60 10 0 0 10
3 0.75 10 0 0 10
4 0.85 10 0 0 10

• Two unequally likely states
• Two actions (a and b)
• 54 subjects



Prediction

• Each subject has ‘threshold belief’
• Determined by information costs

• If prior is within those beliefs
• Both actions used
• Learning takes place
• Same posteriors always used

• If prior is outside these beliefs
• No learning takes place
• Only one action used



Results

• Distribution of thresholds for 54 subjects

Posterior Range N %

[0.5,0.6) 14 25

[0.6,0.75) 12 22

[0.75,0.85) 12 22

[0.85,1] 16 29



Results

• Fraction of subjects who gather no information and always
choose a

Table 10: Testing the ‘No Learning’Prediction:

Fraction of subjects who never choose b
µ(1)

DP8 DP9 DP10

0.6 0.75 0.85

Point estimates γa7(1) < µi (1) 35% 27% 29%

γa7(1) ≥ µi (1) 0% 7% 13%

Significant differences γa7(1) < µi (1) 33% 46% 41%

γa7(1) ≥ µi (1) 3% 10% 14%



Results - Threshold Greater than 0.6



Results - Threshold Greater than 0.75



Results - Threshold Greater than 0.85



Behavioral Properties

• Locally Invariant Posteriors

• Invariant Likelihood Ratio and Response to Incentives

• Invariance Under Compression



Invariant Likelihood Ratio and Responses to Incentives

• For chosen actions our condition implies

u(a(ω))− u(b(ω))
ln γ̄a(ω)− ln γ̄b(ω)

= λ

• Constrains how DM responds to changes in incentives



Invariant Likelihood Ratio - Example

Experiment 2
Decision Payoffs
Problem U(a, 1) U(a, 2) U(b, 1) U(b, 2)
1 5 0 0 5
2 40 0 0 40
3 70 0 0 70
4 95 0 0 95

5
ln γ̄a(5)− ln γ̄b(5)

=
40

ln γ̄a(40)− ln γ̄b(40)
= ... = λ

• One observation pins down λ

• Determines behavior in all other treatments



Invariant Likelihood Ratio - Example

• Observation of choice accuracy for x = 5 pins down λ



Invariant Likelihood Ratio - Example

• Implies expansion path for all other values of x
• This does not hold in our experimental data



Invariant Likelihood Ratio - An Experimental Test



Individual Level Data

• Predicted vs Actual behavior in DP 4 given behavior in DP 1
• 44% of subjects adjust significantly more slowly than Shannon
• 19% significantly more quickly



Behavioral Properties

• Locally Invariant Posteriors

• Invariant Likelihood Ratio and Response to Incentives

• Invariance Under Compression



Symmetry

• Compression implies the property of symmetry
• Behavior invariant to the labelling of states
• Optimal beliefs depend only on the relative value of actions in
that state

• Implies that there is no concept of ‘perceptual distance’



A Simple Example

• N equally likely states of the world {1, 2.....,N}
• Two actions

Payoffs
States 1, ...N2

N
2 + 1, ..,N

action f 10 0
action g 0 10

• Mutual Information predicts a quantized information structure
• Optimal information structure has 2 signals
• Probability of making correct choice is independent of state

exp
(
u(10)

λ

)
1+ exp

(
u(10)

λ

)



Predictions for the Simple Problem - Shannon

• Probability of correct choice does not go down near threshold



Predictions for the Simple Problem - Shannon

• Not true of other information structures (e.g. uniform signals)



Symmetry

• Shannon Model makes strong predictions for the simple
problem

• Accuracy not affected by closeness to threshold
• In contrast to (e.g.) uniform signals

• Which model is correct?
• It may depend on the perceptual environment

• Test prediction in two different environments



Environment 1 (Balls)

Action Payoff ≤ 50 Red Payoff > 50 Red
f 10 0
g 0 10



Environment 2 (Letters)

Action Payoff state letter < N Payoff state letter ≥ N
f 10 0
g 0 10



Experiment

• 2 treatments
• ‘Balls’Experiment

• 23 subjects
• Vary the number of states

• ‘Letters’Experiment
• 24 subjects
• Vary the relative frequency of the state letter

• Test whether probability of correct choice is lower nearer the
threshold



Balls Experiment

• Probability of correct choice significantly correlated with
distance from threshold (p<0.001)



Letters Experiment

• Probability of correct choice does vary between states
• But is not correlated with distance from threshold (p=0.694)



Invariance Under Compression

• Another failure of Invariance Under Compression comes from
Shaw and Shaw [1977]

• Have to recognize which of three letters has appeared
• Letter can appear at any of 8 points in a circle
• Each appearance point equally likely
• Have to say what letter appeared
• Note that the position in which the letter appears is payoff
irrelevant



Further Prior Invariance



Further Prior Invariance

• Now make it more likely that letter appears at ’Due North’or
’Due South’

• Changes priors across payoff irrelevant states
• Should not affect behavior



Further Prior Invariance



Can we Improve on Shannon?

• These experiments tested three key properties of Shannon
• Locally Invariant Posteriors
• Invariant Likelihood Ratio
• Invariance Under Compression (and in particular symmetry)

• LIP did okay(ish), the others did pretty badly
• Expansion path problem
• Symmetry problem

• Can we modify the Shannon model to better fit this data?



Expansion Path

• To fix the expansion path problem there are two obvious
routes

1 Posterior Separable cost functions

K (µ,π) = ∑
Γ
Q(γ)T (γ)− T (µ)

• e.g. we could use Generalized Entropy

TGenρ (γ) =


(

1
(ρ−2)(ρ−1)|Γ| ∑Γ γ̂2−ρ − 1

)
if ρ 6= 1 and ρ 6= 2;

1
|Γ| (∑Γ γ̂ ln γ̂) if ρ = 1;

− 1
|Γ| (∑Γ ln γ̂) if ρ = 2.

2 Drop the assumption that costs are linear is Shannon mutual
information

K (µ,π) = κ

(
∑

γ∈Γ(π)
π(γ) [−H(γ)]− [−H(µ)]

)σ



Symmetry

• It is fairly obvious why symmetry fails in the ’Balls’treatment
• Nearby states are harder to distinguish than those further away
• Shannon cannot take this into account

• Hebert and Woodford [2017] propose a solution
• Divide the state space into I overlapping ’neighborhoods’
X1...XI

• An information structure is assigned a cost for each
neighborhood based on the prior and posteriors conditional on
being in that neighborhood

• Total costs is the sum across all neighborhoods

I

∑
i=1

µ(Xi )∑
γ

Q(γ|Xi ) [−H(γ|Xi )]− [−H(µ|Xi )]

• Has a number of attractive features
• Introduces perceptual distance to Shannon-like models
• Qualitatively fits data from psychometric experiments
• Can be ‘microfounded’as resulting from a process of
sequential information acquisition



Applying Alternative Cost Functions

• We can combine these ideas to come up with a family of cost
function to estimate

1 Linear mutual information with neighborhoods
• Assume one global neighborhood, plus one neighborhood for
each sequential pair of states

• Cost within each neighborhood based on mutual information
• Two parameters:

• κg : marginal cost of information for the global neighborhood
• κl : marginal cost of information for each of the local
neighborhoods

2 Non-linear mutual information with neighborhoods
• As (1), but costs raised to a power
• Introduces one new parameter σ

3 General mutual information with neighborhoods
• As (1) but mutual information replaced with expected change
in generalized entropy

• Introduces one new parameter ρ



Fitted Values (Estimated Separately on Each Experiment)



Fitted Values (Estimated Jointly)



Summary

• Introduced Shannon Mutual Information as a potential cost
function
• Popular in the literature
• ‘Cobb Douglas’vs ‘Revealed Preference’

• Introduced some analytical tools to help solve the Shannon
model
• MM - necessary conditions
• Necessary + Suffi cient Conditions
• Posterior-based approach
• Behavioral characterization

• Shown that the Shannon model can give rise to endogenous
consideration set formation

• Discussed the experimental evidence for other behavioral
implications

• Introduced variants of the Shannon model that better fit the
data
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