Rational Inattention Lecture 2

Mark Dean

Behavioral Economics G6943 Fall 2017

Rational Inattention and Shannon Information Costs

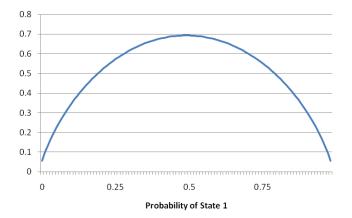
- We have so far considered what we can say when we are agnostic about information costs
- We now move consider behavior under a specific assumed cost for information
- Based on the concept of Shannon Entropy
 - Extremely popular in the applied literature
 - Consider this the 'Cobb Douglas' case to last week's 'revealed preference' treatment
- Long history of research in information theory
 - Quite a lot is known about how these costs behave
 - Cover and Thomas is a great resource

- Shannon Entropy is a measure of how much 'missing information' there is in a probability distribution
- In other words how much we do not know, or how much we would learn from resolving the uncertainty
- For a random variable X that takes the value x_i with probability $p(x_i)$ for i = 1...n, defined as

$$H(X) = E(-\ln(p(x_i)))$$

= $-\sum_i p(x_i) \ln(p_i)$

Shannon Entropy



 Can think of it as how much we learn from result of experiment

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
 - H(X) = H(p)

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution

•
$$\max_{p \in \Delta^M} H(p) = H\left(\left\{\frac{1}{M}, \frac{1}{M}, ..., \frac{1}{M}\right\}\right)$$

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
 - $H(\{p_1....p_M\}) = H(\{p_1....p_M, 0\})$

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
 - $H(X, Y) = H(X) + \sum_{x} p(x)H(Y|x)$
 - How much you learn from observing X, plus how much you additionally learn from observing Y
 - Implies that the entropy of two independent variables is just H(X) + H(Y)
 - 'Constant returns to scale' assumption

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
- Then Entropy must be of the form (Khinchin 1957)

$$H(X) = -\sum_{i} p(x_i) \ln(p_i)$$

Note, other entropies are available! e.g. Tsallis

$$\frac{k}{q-1}(1-\sum_{i}p(x_i)^q)$$

• Related to the notion of entropy is the notion of Mutual Information

$$I(X, Y) = \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

- Measure of how much information one variable tells you about another
- Note that I(X, Y) = 0 if X and Y are independent

Entropy and Information Costs

Note also that mutual information can be rewritten in the following way

$$I(X, Y) = \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

=
$$\sum_{x} \sum_{y} p(x, y) \log \frac{p(x|y)}{p(x)}$$

=
$$\sum_{y} \sum_{x} p(x, y) \ln P(x|y) - \sum_{x} \sum_{y} p(x, y) \ln p(x)$$

=
$$\sum_{y} p(y) \sum_{x} p(x|y) \ln P(x|y) - \sum_{y} p(x) \ln p(x)$$

=
$$H(X) - E(H(X|Y))$$

• Difference between entropy of X and the expected entropy of X once Y is known

Mutual Information and Information Costs

- Mutual Information between states and signals often used to model information constraints
- Sims [2003] focused on a hard constraint on the amount of entropy a DM can use
- We will start by focussing on the case of **costs that are linear in mutual information**

$$\begin{split} \mathcal{K}(\mu, \pi) &= \lambda(\mathcal{H}(\mu) - \mathcal{E}(\mathcal{H}(\gamma))) \\ &= \lambda \left(\begin{array}{c} \sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) \sum_{\Omega} \gamma(\omega) \ln \gamma(\omega) \\ -\sum_{\Omega} \mu(\omega) \ln \mu(\omega) \end{array} \right) \end{split}$$

- For convenience use γ to refer to the posterior beliefs generated by signal γ

Mutual Information and Information Costs

- Can be justified by information theory
- Say you are going to observe *n* repetitions of the state Ω (let ω^n be a typical element)
- You are allowed to send a message consisting of *nR* bits (*R* is the rate)
- Decoded in order to generate *n* repetitions of the signal space Γ (let γ^n be a typical element)
- Define $d(\omega, \gamma)$ be the loss associated with receiving signal γ in state ω , and $\hat{d}(\omega^n, \gamma^n) = \frac{1}{n} \sum d(\omega^n_i, \gamma^n_i)$

Mutual Information and Information Costs

 Rate Distortion Theorem: Let R(D) be the minimal rate needed to generate loss D as n → ∞, then

$${\sf R}({\sf D}) = \min_{\pi \in \Pi} I(\Omega,\Gamma) ext{ s.t. } \sum_{(\gamma,\omega)} \mu(x) \pi(\gamma|x) d(\omega,\gamma) \leq {\sf D}$$

• Implies (assuming strict monotonicity)

$$\min \sum_{(\gamma,\omega)} \mu(x) \pi(\gamma|x) d(\omega,\gamma) \text{ s.t. } I(\Omega,\Gamma) \leq R(D)$$

• is equivalent to

$$\min \sum_{(\gamma,\omega)} \mu(x) \pi(\gamma|x) d(\omega,\gamma)$$
 s.t. $R \leq R(D)$

• See Cover and Thomas Chapter 10.

- Key feature: Entropy is strictly concave
- So negative of entropy is strictly convex
- Say we choose a signal structure with two posteriors γ and γ'
- It must be that

$$P(\gamma)\gamma + P(\gamma')\gamma' = \mu$$

SO

$$P(\gamma)H(\gamma) + P(\gamma')H(\gamma') < H(P(\gamma)\gamma + p(\gamma')\gamma') = H(\mu)$$

• So the cost of 'learning something' is always positive

Solving Rational Inattention Models

- Solving the Shannon model can be difficult analytically
 - Though easier than many other models
- General approach ignore choice of information structure, instead focus on joint distribution of choice variable and state
 - i.e. choose state dependent stochastic choice directly
 - Can do this because optimal strategy will always be 'well behaved'
 - Each action taken in at most one state
- Example (Matejka and McKay 2015) continuous state space, finite action space
- We will talk about analytical approaches
 - Alternative, algorithmic approaches
 - e.g. Blahut-Arimotio algorithm
 - See Cover and Thomas (page 191)

Solving Rational Inattention Models

- ${\mathcal P}$ set of all state contingent stochastic choice functions for some state space Ω and set of acts A
- Remember $P(a|\omega)$ is the probability of choosing a in state ω
- Remember that, for $P \in \mathcal{P}$, the mutual information between choices *a* and objective state ω is given by

$$I(A, \Omega) = H(A) - H(A|\Omega)$$

Solving Rational Inattention Models

• Decision problem of agent is to choose $P \in \mathcal{P}$ to maximize

$$\begin{split} &\sum_{\mathbf{a}\in\mathcal{A}}\int_{\omega}u(\mathbf{a}(\omega))P(\mathbf{a}|\omega)\mu(d\omega)\\ &-\lambda\left[\sum_{\mathbf{a}\in\mathcal{A}}\int_{\omega}P(\mathbf{a}|\omega)\ln P(\mathbf{a}|\omega)\mu(d\omega)+\sum_{\mathbf{a}\in\mathcal{A}}P(\mathbf{a})\ln P(\mathbf{a})\right] \end{split}$$

Subject to

$$\sum_{{\sf a}\in A}{\sf P}({\sf a}|\omega)=1$$
 Almost surely

- Where P(a) is the unconditional probability of choosing a
- Note another constraint which we will ignore for now

$$P(\mathbf{a}|\omega) \geq 0 \ \forall \ \mathbf{a}, \omega$$

The Lagrangian Function

$$\begin{split} &\sum_{\mathbf{a}\in A} \int_{\omega} u(\mathbf{a}(\omega)) P(\mathbf{a}|\omega) \mu(d\omega) \\ &-\lambda \left[\sum_{\mathbf{a}\in A} \int_{\omega} P(\mathbf{a}|\omega) \ln P(\mathbf{a}|\omega) \mu(d\omega) + \sum_{\mathbf{a}\in A} P(\mathbf{a}) \ln P(\mathbf{a}) \right] \\ &-\int_{\omega} \rho(\omega) \left[\sum_{\mathbf{a}\in A} P(\mathbf{a}|\omega) - 1 \right] \mu(d\omega) \end{split}$$

- $\rho(\omega)$ Lagrangian multiplier on the condition that $\sum_{{\it a}\in {\it A}} {\it P}({\it a}|\omega) = 1$
- FOC WRT $P(a|\omega)$ (assuming >0)

$$u(a(\omega)) -
ho(\omega) + \lambda [\ln P(a) + 1 - \ln P(a|\omega) - 1] = 0$$

Note that this is a convex problem

Solution

- FOC WRT $P(a|\omega)$ (assuming >0) $u(a(\omega)) - \rho(\omega) + \lambda [\ln P(a) + 1 - \ln P(a|\omega) - 1] = 0$
- Which gives

$$P(\mathbf{a}|\omega) = P(\mathbf{a}) \exp^{rac{u(\mathbf{a}(\omega)) -
ho(\omega)}{\lambda}}$$

Plug this into

$$\sum_{a' \in A} P(a'|\omega) = 1$$

$$\Rightarrow \exp^{\frac{\rho(\omega)}{\lambda}} = \sum_{a' \in A} P(a') \exp^{\frac{u(a'(\omega))}{\lambda}}$$

• Which in turn gives...

Comments

$${\sf P}({\sf a}|\omega) = rac{{\sf P}({\sf a})\exp rac{u({\sf a}(\omega))}{\lambda}}{\sum_{c\in {\sf A}}{\sf P}(c)\exp rac{u(c(\omega))}{\lambda}}$$

- Similar in form to logistic random choice
- If alternatives are ex ante identical, this *is* logistic choice
- Otherwise choice probabilities are 'warped' by P(a) which contains information on the prior value of each option
 - Important: note that P(a) is endogenous, **not** a parameter
- As costs go to zero, deterministically pick best option in that state
- As costs go to infinity, deterministically pick the best option ex ante

• The MM conditions ignore the constraint

$$P(\mathbf{a}|\omega) \geq \mathbf{0} \; \forall \; \mathbf{a}, \omega$$

- Need to know which acts will be chosen with positive probability
- Typically there will be many acts not chosen at the optimum (Jung et al. 2015)
- There will be many solutions to the necessary conditions
- Ideally, would like necessary and sufficient conditions

• Let $z(a, \omega)$ be 'normalized utilities'

$$z(a,\omega) = \exp\left\{rac{u(a,\omega)}{\lambda}
ight\}$$

• Note that the MM conditions are

$$P(\mathbf{a}|\boldsymbol{\omega}) = \frac{P(\mathbf{a})z(\mathbf{a},\boldsymbol{\omega})}{\sum_{c\in A}P(c)z(c,\boldsymbol{\omega})}$$

Theorem

P is consistent with rational inattention with mutual information costs **if and only if**

$$\begin{split} \sum_{\omega} \left[\frac{\mu(\omega) z(\mathbf{a}, \omega)}{\sum_{c \in A} P(c) z(c, \omega)} \right] &\leq 1 \text{ all } \mathbf{a} \in A \\ \sum_{\omega} \left[\frac{\mu(\omega) z(\mathbf{a}, \omega)}{\sum_{c \in A} P(c) z(c, \omega)} \right] &= 1 \text{ all } \mathbf{a} \text{ s.t. } P(\mathbf{a}) > 0 \end{split}$$

and

$$P(\mathbf{a}|\omega) = \frac{P(\mathbf{a})z(\mathbf{a},\omega)}{\sum_{c \in A} P(c)z(c,\omega)}$$

- 1 Identify correct unconditional choice probabilities
 - Equality condition for chosen actions
 - Check inequality condition for unchosen actions

2 Read off conditional choice probabilities using MM conditions

Example: Finding the Good Act

- Choose from a set of goods $A = \{a_1, ..., a_N\}$
- Only one of these goods is of high quality
 - *u_h* utility of the high quality good
 - u_l utility of the low quality good
 - μ_i prior probability that good *i* is the high quality good
 - WLOG assume $\mu_1 \ge \mu_2 \ge \mu_N$
- Common set up in many psychology experiments

- Cutoff strategy in prior probabilities: Exists *c* such that
 - $\mu_i > c \Rightarrow i$ chosen with positive probability
 - $\mu_i < c \Rightarrow i$ never chosen and nothing is learned about their quality
- Endogenously form a 'consideration set'
- Let $\delta = \frac{\exp(\frac{u_h}{\lambda})}{\exp(\frac{u_l}{\lambda})} 1$: 'additional' utility from high act
- Search the best K alternatives, where K solves

$$\mu_{\mathcal{K}} > \frac{\sum_{k=1}^{\mathcal{K}} \mu_k}{\mathcal{K} + \delta} \ge \mu_{\mathcal{K}+1}.$$

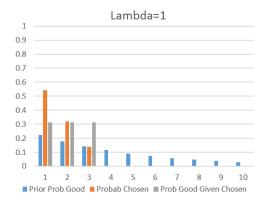
• Can use equality constraints to solve for unconditional choice probabilities

$$P(\mathbf{a}_i) = \frac{\mu(\omega_i)(K+\delta) - \sum_{k=1}^{K} \mu(\omega_k)}{\delta \sum_{k=1}^{K} \mu(\omega_k)}$$

• MM conditions to solve for conditional choice probabilities

$$P(b|b = u_h) = rac{P(b)\delta}{\sum_{c \in A} P(c)}$$

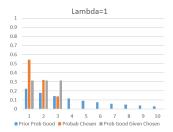
Choice Probabilities - Example

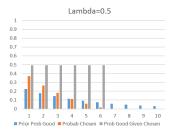


- Exponential priors
- $u_h = 1, u_l = 0$

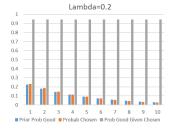
- 'Consideration set' of alternatives chosen with positive probability
- Mistakes even amongst alternatives in the consideration sets
- Ex ante probability of alternative being good conditional on being chosen is same for all alternatives

Choice Probabilities - Example





Lambda=0.4



- The MM necessary conditions could be solved for many possible 'consideration sets'
 - Choosing any option with probability 1 will solve the necessary conditions
 - For any set C with worst alternative $\mu_{\bar{C}}$ there is a solution to the necessary conditions if

$$\frac{\mu_{\bar{C}}}{\sum_{k\in C}\mu_k} > \frac{1}{|C|+\delta}.$$

- Do no reference unchosen actions
- Do not determine whether higher utility could be obtained with a different consideration sets
- This is the advantage of the sufficient conditions

The Linear Quadratic Gaussian Case

- One case in which this problem becomes more tractable is if the input and output signal are both normal
- The entropy of a normal variable $X \sim N(\mu, \sigma_x^2)$ is given by

$$H(Y) = \frac{1}{2}\ln(2\pi e\sigma_x^2)$$

• If Y and X are both normal, then

$$E(H(Y|X)) = \int_{x} f(x) \int_{y} f(y|x) \ln f(y|x) d(y) d(x)$$

• As y|x is distributed normally with variance $(1-\rho^2)\sigma_y^2$, this becomes

$$E(H(Y|X)) = \int_{x} f(x) \frac{1}{2} \ln(2\pi e \sigma_{y|x}^{2}) d(x)$$
$$= \frac{1}{2} \ln(2\pi e (1-\rho^{2}) \sigma_{y}^{2})$$

The Linear Quadratic Gaussian Case

As mutual information is given by

$$H(Y) - E(H(Y|X)) = \frac{1}{2}\ln(2\pi e\sigma_y^2) - \frac{1}{2}\ln(2\pi e(1-\rho^2)\sigma_y^2)$$

• In this case, the mutual information is given by

$$\frac{1}{2}\ln(1-\rho^2)$$

- So information costs depend only on the covariance of the two signals!
- It turns out that joint normality is optimal if the utility function is quadratic in the relationship between the objective and subjective state
 - Choice of variance on some normally distributed error term
- However, note that some papers *assume* normality (this is bad)

- There is another way to approach this problem which possibly gives more insight
- Assume we are choosing Q, a (simple) distribution over posterior beliefs, with Q(γ) the probability of belief γ
- We can also work with a generalized cost function

$$\sum_{\Gamma} Q(\gamma) T(\gamma) - T(\mu)$$

where T is some strictly convex function

- For example, we could replace Shannon entropy with other types of entropy.
- Call this the class of 'posterior separable' cost functions

Set Up

One way to gain insight into what is going on is to rewrite the objective function

$$\sum_{\Gamma} Q(\gamma) \left[\max_{a \in A} \sum_{\Omega} \gamma(\omega) u(a, \omega) \right] - \left[\sum_{\Gamma} Q(\gamma) T(\gamma) - T(\mu) \right]$$
$$= \sum_{\Gamma} Q(\gamma) \left[\max_{a \in A} \sum_{\Omega} \gamma(\omega) u(a, \omega) - T(\gamma) \right] + T(\mu)$$
$$= \sum_{\Gamma} Q(\gamma) \max_{a \in A} N_a(\gamma)$$

• Each γ and a has a net utility associated with it

$$N_A(\gamma) = \sum_{\Omega} \gamma(\omega) u(\mathbf{a}, \omega) - [T(\gamma) - T(\mu)]$$

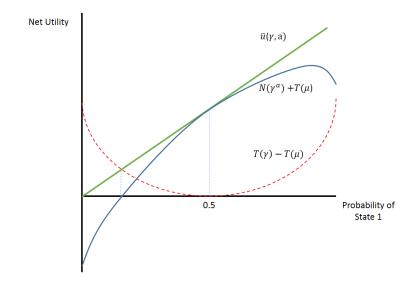
• Aim is to pick distribution of posteriors which maximizes the expected value of net utilities subject to

$$\sum_{\gamma \in \Gamma(\pi)} Q(\gamma)\gamma = \mu$$

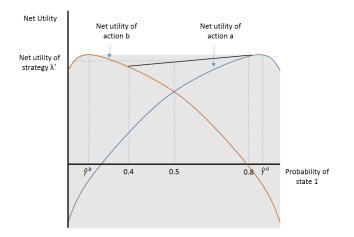
• Consider a simple case with two states and two acts

Action	Payoff in state 1	Payoff in state 2
а	10	0
b	0	10

Net Utility

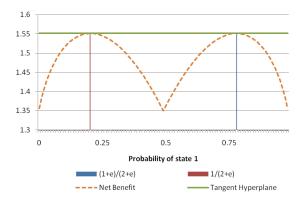


Optimal Strategy



- What to find the posteriors which support the highest chord above the prior
- The solution for every possible prior defined by the lower epigraph of the concavified net utility function

Finding the Optimal Strategy



 Optimal posteriors identified by hyperplane that supports the set of feasible net utilities.

Theorem

Given decision problem $(\mu, A) \in \Gamma \times \mathcal{F}$ a set of posteriors are rationally inattentive if and only if:

1 Invariant Likelihood Ratio (ILR) Equations for Chosen Acts: given a, $b \in B$, and $\omega \in \Omega$,

$$\frac{\gamma^{\mathsf{a}}(\omega)}{\mathsf{z}(\mathsf{a}(\omega))} = \frac{\gamma^{\mathsf{b}}(\omega)}{\mathsf{z}(\mathsf{b}(\omega))}$$

2 Likelihood Ratio Inequalities for Unchosen Acts: given act a chosen with positive probability and $b \in A$,

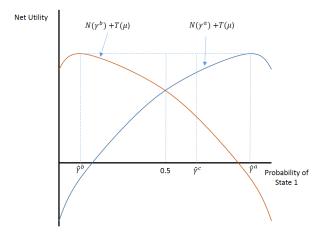
$$\sum_{\omega \in \Omega} \left[\frac{\gamma^{\mathbf{a}}(\omega)}{z(\mathbf{a}(\omega))} \right] z(\mathbf{b}(\omega)) \leq 1.$$

- We have necessary and sufficient conditions to characterize the Shannon model
- But these do not necessarily help us understand the behaviors that it predicts
- Might be helpful to have a more 'behavioral' characterization

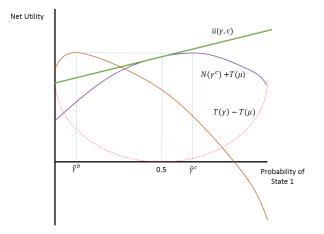
Posterior Separability

- Turns out that we can characterize using three behavioral axioms
 - Plus some technical ones that we won't bother with
- Separability
- **2** Locally Invariant Posteriors
- **3** Invariance Under Compression

Separability



Separability



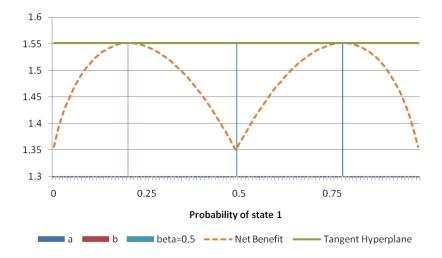
- Separability states you can always do this
 - For any set of chosen acts and associated posteriors
 - Can switch out one posterior and replace it with another posterior
 - Changing only the associated act.

Locally Invariant Posterior

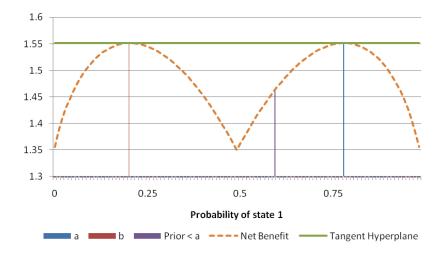
• Example: 2 states, 2 actions

Action	Payoff in state 1	Payoff in state 2
f ¹	X	0
f ²	0	X

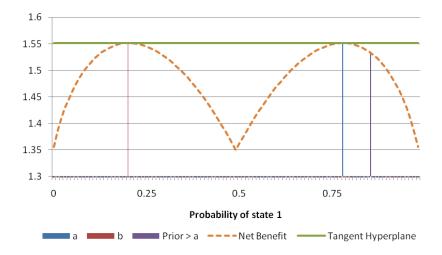
Behavior at 0.5 Prior



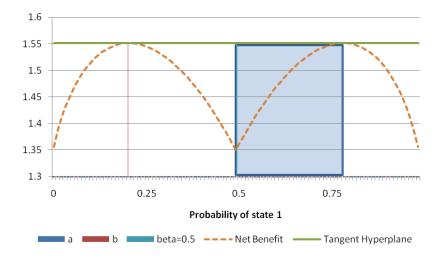
Behavior for prior<a



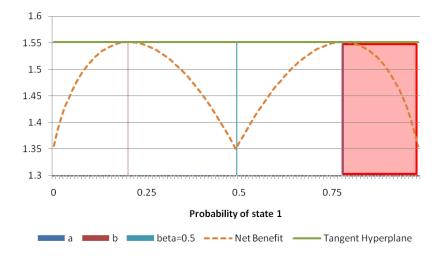
Behavior for prior>a



Same Posteriors as for 0.5 prior



No Information Gathered



Locally Invariant Posteriors

- Locally Invariant posteriors: If a set of posteriors {γ^a}_{a∈A} are optimal for decision problem {μ, A} and are also feasible for {μ', A} then they are also optimal for that decision problem
- Choice probabilities move 'mechanically' with prior to maintain posteriors
- Useful in, for example, models in which consumers are rationally inattentive to quality
 - As the prior distribution of quality changes, posterior beliefs do not
 - See Martin [2014]

- The Shannon model is clearly 'special' in many ways in the class of UPS model
- The literature has noted many properties
 - Symmetry
 - Separability of Orthogonal Decisions
 - Lack of Complementarities
- All of these properties can be captured in a single axiom
 - Invariance Under Compression

Invariance Under Compression - An Example

• Consider decision problem (*i*)

State	ω_1	ω_2
Prior Prob	0.5	0.5
Payoff Action A	10	0
Payoff Action B	0	10

• And now decision problem (ii) which splits ω_2

State	ω_1	ω_2	ω_3
Prior Prob	0.5	0.2	0.3
Payoff Action A	10	0	0
Payoff Action B	0	10	10

- How should behavior change between the two decision problems?
- In principal, many things could happen
 - Could be harder to learn about two states that one, so less accurate in (ii) than (i)
 - Could be easier to learn about two states that one, so more accurate in (ii) than (i)
- Shannon model says that behavior should not change

•
$$P_i(\mathbf{a}|\omega_2) = P_{ii}(\mathbf{a}|\omega_2) = P_{ii}(\mathbf{a}|\omega_3)$$

- Invariance under Compression formalizes this
- Defines the concept of a 'basic' decision problem
 - No two states have the same payoff for all acts
- Every decision problem has associated basic forms
- Choice behavior the same when moving between decision problems and their basic forms
- Corollaries
 - Behavior the same in every state which is payoff equivalent
 - Moving prior probabilities between payoff equivalent states does not change behavior

Experimental Tests

- Locally Invariant Posteriors
- Invariant Likelihood Ratio and Response to Incentives
- Invariance Under Compression

Experimental Tests

- Locally Invariant Posteriors
- Invariant Likelihood Ratio and Response to Incentives
- Invariance Under Compression

Experiment

Table 1: Experiment						
Decision		Payoffs				
Problem	$\mu(1)$	$ \mid U(\mathbf{a}(1)) \mid U(\mathbf{a}(2)) \parallel U(b(1)) \mid U(b(2)) $				
1	0.50	10	0	0	10	
2	0.60	10	0	0	10	
3	0.75	10	0	0	10	
4	0.85	10	0	0	10	

- Two unequally likely states
- Two actions (*a* and *b*)
- 54 subjects

Prediction

- Each subject has 'threshold belief'
 - Determined by information costs
- If prior is within those beliefs
 - Both actions used
 - Learning takes place
 - Same posteriors always used
- If prior is outside these beliefs
 - No learning takes place
 - Only one action used

Results

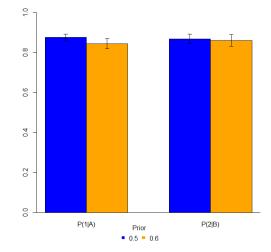
• Distribution of thresholds for 54 subjects

Posterior Range	N	%
[0.5,0.6)	14	25
[0.6,0.75)	12	22
[0.75,0.85)	12	22
[0.85,1]	16	29

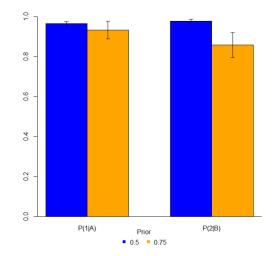
• Fraction of subjects who gather no information and always choose *a*

Table 10: Testing the 'No Learning' Prediction:				
Fraction of subjects who never choose <i>b</i>				
		$\mu(1)$		
		DP8	DP9	DP10
		0.6	0.75	0.85
Point estimates	$\gamma_7^{\rm a}(1) < \mu_i(1)$	35%	27%	29%
	$\gamma_7^{\rm a}(1) \geq \mu_i(1)$	0%	7%	13%
Significant differences	$\gamma_7^{\rm a}(1) < \mu_i(1)$	33%	46%	41%
	$\gamma_7^{a}(1) \geq \mu_i(1)$	3%	10%	14%

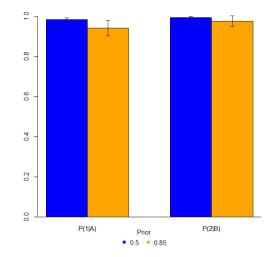
Results - Threshold Greater than 0.6



Results - Threshold Greater than 0.75



Results - Threshold Greater than 0.85



Behavioral Properties

- Locally Invariant Posteriors
- Invariant Likelihood Ratio and Response to Incentives
- Invariance Under Compression

Invariant Likelihood Ratio and Responses to Incentives

• For chosen actions our condition implies

$$\frac{u(\mathbf{a}(\omega)) - u(b(\omega))}{\ln \bar{\gamma}^{\mathbf{a}}(\omega) - \ln \bar{\gamma}^{b}(\omega)} = \lambda$$

Constrains how DM responds to changes in incentives

Invariant Likelihood Ratio - Example

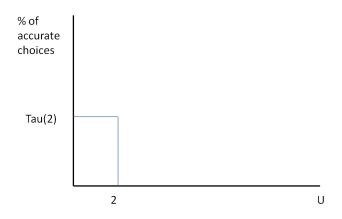
Experiment 2				
Decision	Payoffs			
Problem	U(a,1)	<i>U</i> (<i>a</i> , 2)	U(b,1)	U(b,2)
1	5	0	0	5
2	40	0	0	40
3	70	0	0	70
4	95	0	0	95
5 40				
$\frac{1}{\ln \bar{\gamma}^{a}(5) - \ln \bar{\gamma}^{b}(5)} = \frac{1}{\ln \bar{\gamma}^{a}(40) - \ln \bar{\gamma}^{b}(40)} = \dots = 0$				

• One observation pins down λ

h

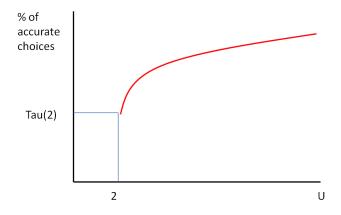
• Determines behavior in all other treatments

Invariant Likelihood Ratio - Example



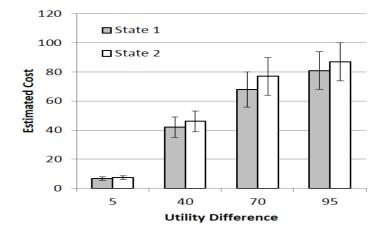
• Observation of choice accuracy for x=5 pins down λ

Invariant Likelihood Ratio - Example

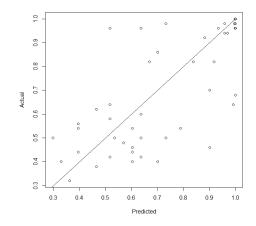


- Implies expansion path for all other values of x
- This does not hold in our experimental data

Invariant Likelihood Ratio - An Experimental Test



Individual Level Data



- Predicted vs Actual behavior in DP 4 given behavior in DP 1
- 44% of subjects adjust significantly more slowly than Shannon
- 19% significantly more quickly

Behavioral Properties

- Locally Invariant Posteriors
- Invariant Likelihood Ratio and Response to Incentives
- Invariance Under Compression

- Compression implies the property of symmetry
- Behavior invariant to the labelling of states
- Optimal beliefs depend **only** on the relative value of actions in that state
- Implies that there is no concept of 'perceptual distance'

A Simple Example

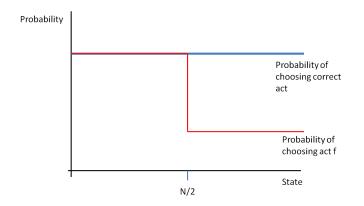
- *N* equally likely states of the world {1, 2...., *N*}
- Two actions

	Payoffs		
States	$1, \frac{N}{2}$	$\frac{N}{2}$ + 1,, N	
action f	10	0	
action g	0	10	

- Mutual Information predicts a *quantized* information structure
 - Optimal information structure has 2 signals
 - Probability of making correct choice is independent of state

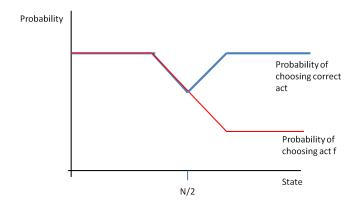
$$\frac{\exp\left(\frac{u(10)}{\lambda}\right)}{1+\exp\left(\frac{u(10)}{\lambda}\right)}$$

Predictions for the Simple Problem - Shannon



Probability of correct choice does not go down near threshold

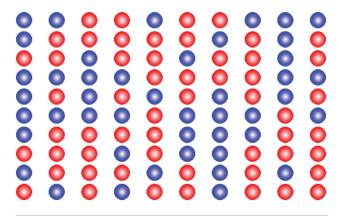
Predictions for the Simple Problem - Shannon



• Not true of other information structures (e.g. uniform signals)

- Shannon Model makes strong predictions for the simple problem
 - Accuracy not affected by closeness to threshold
 - In contrast to (e.g.) uniform signals
- Which model is correct?
 - It may depend on the **perceptual environment**
- Test prediction in two different environments

Environment 1 (Balls)

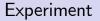


Action	$Payoff \leq 50 \; Red$	$Payoff > 50 \mathbf{Red}$
f	10	0
g	0	10

Environment 2 (Letters)

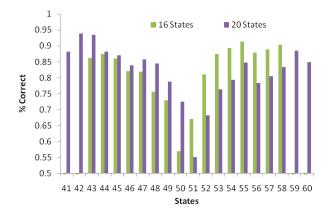
J	Р	Р	J	J	L
Р	N	к	Ν	К	М
J	Q	м	0	L	0
0	м	L	Ν	Q	J
Q	к	J			

Action	Payoff state letter < N	Payoff state letter \geq N	
f	10	0	
g	0	10	



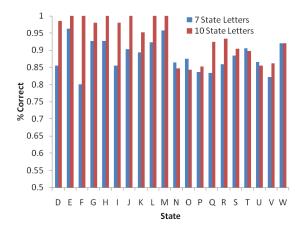
- 2 treatments
- 'Balls' Experiment
 - 23 subjects
 - Vary the number of states
- 'Letters' Experiment
 - 24 subjects
 - Vary the relative frequency of the state letter
- Test whether probability of correct choice is lower nearer the threshold

Balls Experiment



 Probability of correct choice significantly correlated with distance from threshold (p<0.001)

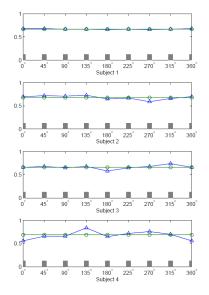
Letters Experiment



- Probability of correct choice does vary between states
- But is not correlated with distance from threshold (p=0.694)

- Another failure of Invariance Under Compression comes from Shaw and Shaw [1977]
- Have to recognize which of three letters has appeared
- Letter can appear at any of 8 points in a circle
- Each appearance point equally likely
- Have to say what letter appeared
- Note that the position in which the letter appears is payoff irrelevant

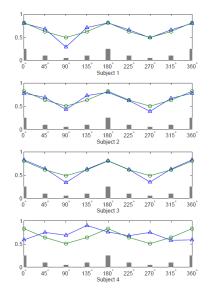
Further Prior Invariance



Further Prior Invariance

- Now make it more likely that letter appears at 'Due North' or 'Due South'
- Changes priors across payoff irrelevant states
- Should not affect behavior

Further Prior Invariance



- These experiments tested three key properties of Shannon
 - Locally Invariant Posteriors
 - Invariant Likelihood Ratio
 - Invariance Under Compression (and in particular symmetry)
- LIP did okay(ish), the others did pretty badly
 - Expansion path problem
 - Symmetry problem
- Can we modify the Shannon model to better fit this data?

Expansion Path

- To fix the expansion path problem there are two obvious routes
- **1** Posterior Separable cost functions

$$K(\mu, \pi) = \sum_{\Gamma} Q(\gamma) T(\gamma) - T(\mu)$$

• e.g. we could use Generalized Entropy

$$\mathcal{T}_{\rho}^{Gen}(\gamma) = \begin{cases} \left(\frac{1}{(\rho-2)(\rho-1)|\Gamma|}\sum_{\Gamma}\hat{\gamma}^{2-\rho}-1\right) \text{ if } \rho \neq 1 \text{ and } \rho \neq 2;\\ \frac{1}{|\Gamma|}\left(\sum_{\Gamma}\hat{\gamma}\ln\hat{\gamma}\right) \text{ if } \rho = 1;\\ -\frac{1}{|\Gamma|}\left(\sum_{\Gamma}\ln\hat{\gamma}\right) \text{ if } \rho = 2. \end{cases}$$

2 Drop the assumption that costs are linear is Shannon mutual information

$$\mathcal{K}(\mu, \pi) = \kappa \left(\sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) \left[-\mathcal{H}(\gamma)\right] - \left[-\mathcal{H}(\mu)\right]\right)^{\sigma}$$

Symmetry

- It is fairly obvious why symmetry fails in the 'Balls' treatment
 - Nearby states are harder to distinguish than those further away
 - Shannon cannot take this into account
- Hebert and Woodford [2017] propose a solution
 - Divide the state space into *I* overlapping 'neighborhoods' X₁...X_I
 - An information structure is assigned a cost for each neighborhood based on the prior and posteriors conditional on being in that neighborhood
 - Total costs is the sum across all neighborhoods

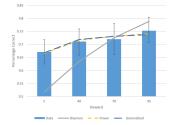
$$\sum_{i=1}^{l} \mu(X_i) \sum_{\gamma} Q(\gamma | X_i) \left[-H(\gamma | X_i) \right] - \left[-H(\mu | X_i) \right]$$

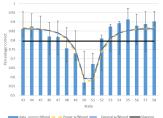
- Has a number of attractive features
 - Introduces perceptual distance to Shannon-like models
 - Qualitatively fits data from psychometric experiments
 - Can be 'microfounded' as resulting from a process of sequential information acquisition

Applying Alternative Cost Functions

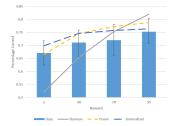
- We can combine these ideas to come up with a family of cost function to estimate
- 1 Linear mutual information with neighborhoods
 - Assume one global neighborhood, plus one neighborhood for each sequential pair of states
 - Cost within each neighborhood based on mutual information
 - Two parameters:
 - κ_g : marginal cost of information for the global neighborhood
 - κ₁: marginal cost of information for each of the local neighborhoods
- 2 Non-linear mutual information with neighborhoods
 - As (1), but costs raised to a power
 - Introduces one new parameter σ
- 3 General mutual information with neighborhoods
 - As (1) but mutual information replaced with expected change in generalized entropy
 - Introduces one new parameter ho

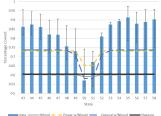
Fitted Values (Estimated Separately on Each Experiment)





Fitted Values (Estimated Jointly)





- Introduced Shannon Mutual Information as a potential cost function
 - Popular in the literature
 - 'Cobb Douglas' vs 'Revealed Preference'
- Introduced some analytical tools to help solve the Shannon model
 - MM necessary conditions
 - Necessary + Sufficient Conditions
 - Posterior-based approach
 - Behavioral characterization
- Shown that the Shannon model can give rise to endogenous consideration set formation
- Discussed the experimental evidence for other behavioral implications
- Introduced variants of the Shannon model that better fit the data