Rational Inattention Lecture 2

Mark Dean

Behavioral Economics G6943 Autumn 2019

Rational Inattention and Shannon Information Costs

- We have so far considered what we can say when we are agnostic about information costs
- We now move consider behavior under a specific assumed cost for information
- Based on the concept of Shannon Entropy
 - Extremely popular in the applied literature
 - Consider this the 'Cobb Douglas' case to last week's 'revealed preference' treatment
- Long history of research in information theory
 - Quite a lot is known about how these costs behave
 - Cover and Thomas is a great resource

Shannon Entropy

- Shannon Entropy is a measure of how much 'missing information' there is in a probability distribution
- In other words how much we do not know, or how much we would learn from resolving the uncertainty
- For a random variable X that takes the value x_i with probability $p(x_i)$ for i = 1...n, defined as

$$H(X) = E(-\ln(p(x_i)))$$

=
$$-\sum_i p(x_i) \ln(p_i)$$

Shannon Entropy

Can think of it as how much we learn from result of experiment

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
 - $\bullet \ \ H(X)=H(p)$

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution

•
$$\max_{p \in \Delta^M} H(p) = H\left(\left\{\frac{1}{M}, \frac{1}{M}, ..., \frac{1}{M}\right\}\right)$$

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
 - $H({p_1...p_M}) = H({p_1...p_M,0})$

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
 - $H(X, Y) = H(X) + \sum_{x} p(x)H(Y|x)$
 - How much you learn from observing X, plus how much you additionally learn from observing Y
 - Implies that the entropy of two independent variables is just H(X) + H(Y)
 - · 'Constant returns to scale' assumption

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
- Then Entropy must be of the form (Khinchin 1957)

$$H(X) = -\sum_{i} p(x_i) \ln(p_i)$$

Note, other entropies are available! e.g. Tsallis

$$\frac{k}{q-1}(1-\sum_{i}p(x_{i})^{q})$$

Entropy and Information Costs

 Related to the notion of entropy is the notion of Mutual Information

$$I(X, Y) = \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$

- Measure of how much information one variable tells you about another
- Note that I(X, Y) = 0 if X and Y are independent

Entropy and Information Costs

 Note also that mutual information can be rewritten in the following way

$$I(X,Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x} \sum_{y} p(x,y) \log \frac{p(x|y)}{p(x)}$$

$$= \sum_{y} \sum_{x} p(x,y) \ln P(x|y) - \sum_{x} \sum_{y} p(x,y) \ln p(x)$$

$$= \sum_{y} p(y) \sum_{x} p(x|y) \ln P(x|y) - \sum_{y} p(x) \ln p(x)$$

$$= H(X) - E(H(X|Y))$$

 Difference between entropy of X and the expected entropy of X once Y is known

Mutual Information and Information Costs

- Mutual Information between states and signals often used to model information constraints
- Sims [2003] focused on a hard constraint on the amount of entropy a DM can use
- We will start by focussing on the case of costs that are linear in mutual information

$$\begin{split} \mathcal{K}(\mu,\pi) &= \lambda(\mathcal{H}(\mu) - \mathcal{E}\left(\mathcal{H}(\gamma)\right) \\ &= \lambda\left(\begin{array}{cc} \sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) \sum_{\Omega} \gamma\left(\omega\right) \ln \gamma(\omega) \\ -\sum_{\Omega} \mu(\omega) \ln \mu\left(\omega\right) \end{array}\right) \end{split}$$

• For convenience use γ to refer to the posterior beliefs generated by signal γ

Mutual Information and Information Costs

- Can be justified by information theory
- Say you are going to observe n repetitions of the state Ω (let ω^n be a typical element)
- You are allowed to send a message consisting of nR bits (R is the rate)
- Decoded in order to generate n repetitions of the signal space Γ (let γ^n be a typical element)
- Define $d(\omega, \gamma)$ be the loss associated with receiving signal γ in state ω , and $\hat{d}(\omega^n, \gamma^n) = \frac{1}{n} \sum d(\omega_i^n, \gamma_i^n)$

Mutual Information and Information Costs

• Rate Distortion Theorem: Let R(D) be the minimal rate needed to generate loss D as $n \to \infty$, then

$$R(D) = \min_{\pi \in \Pi} I(\Omega, \Gamma) \text{ s.t. } \sum_{(\gamma, \omega)} \mu(x) \pi(\gamma|x) d(\omega, \gamma) \leq D$$

Implies (assuming strict monotonicity)

$$\min \sum_{(\gamma,\omega)} \mu(x) \pi(\gamma|x) d(\omega,\gamma) \text{ s.t. } I(\Omega,\Gamma) \leq R(D)$$

• is equivalent to

$$\min \sum_{(\gamma,\omega)} \mu(x) \pi(\gamma|x) d(\omega,\gamma)$$
 s.t. $R \leq R(D)$

• See Cover and Thomas Chapter 10.

Shannon Entropy

- Key feature: Entropy is strictly concave
- So negative of entropy is strictly convex
- ullet Say we choose a signal structure with two posteriors γ and γ'
- It must be that

$$P(\gamma)\gamma + P(\gamma')\gamma' = \mu$$

SO

$$P(\gamma)H(\gamma) + P(\gamma')H(\gamma') < H(P(\gamma)\gamma + p(\gamma')\gamma')$$

= $H(\mu)$

So the cost of 'learning something' is always positive

Solving Rational Inattention Models

- Solving the Shannon model can be difficult analytically
 - Though easier than many other models
- General approach ignore choice of information structure, instead focus on joint distribution of choice variable and state
 - i.e. choose state dependent stochastic choice directly
 - Can do this because optimal strategy will always be 'well behaved'
 - · Each action taken in at most one state
- Example (Matejka and McKay 2015) continuous state space, finite action space
- We will talk about analytical approaches
 - Alternative, algorithmic approaches
 - e.g. Blahut-Arimotio algorithm
 - See Cover and Thomas (page 191)

Solving Rational Inattention Models

- $\mathcal P$ set of all state contingent stochastic choice functions for some state space Ω and set of acts A
- Remember $P(a|\omega)$ is the probability of choosing a in state ω
- Remember that, for $P \in \mathcal{P}$, the mutual information between choices a and objective state ω is given by

$$I(A, \Omega) = H(A) - H(A|\Omega)$$

Solving Rational Inattention Models

ullet Decision problem of agent is to choose $P\in\mathcal{P}$ to maximize

$$\begin{split} & \sum_{a \in A} \int_{\omega} u(a(\omega)) P(a|\omega) \mu(d\omega) \\ & - \lambda \left[\sum_{a \in A} \int_{\omega} P(a|\omega) \ln P(a|\omega) \mu(d\omega) + \sum_{a \in A} P(a) \ln P(a) \right] \end{split}$$

Subject to

$$\sum_{a\in A} P(a|\omega) = 1$$
 Almost surely

- Where P(a) is the unconditional probability of choosing a
- Note another constraint which we will ignore for now

$$P(a|\omega) \geq 0 \ \forall \ a, \omega$$

The Lagrangian Function

$$\begin{split} &\sum_{\mathbf{a}\in A}\int_{\omega}u(\mathbf{a}(\omega))P(\mathbf{a}|\omega)\mu(d\omega)\\ &-\lambda\left[\sum_{\mathbf{a}\in A}\int_{\omega}P(\mathbf{a}|\omega)\ln P(\mathbf{a}|\omega)\mu(d\omega)+\sum_{\mathbf{a}\in A}P(\mathbf{a})\ln P(\mathbf{a})\right]\\ &-\int_{\omega}\rho(\omega)\left[\sum_{\mathbf{a}\in A}P(\mathbf{a}|\omega)-1\right]\mu(d\omega) \end{split}$$

- $\rho(\omega)$ Lagrangian multiplier on the condition that $\sum_{\mathbf{a}\in\mathbf{A}}P(\mathbf{a}|\omega)=1$
- FOC WRT $P(a|\omega)$ (assuming >0)

$$u(a(\omega)) - \rho(\omega) + \lambda[\ln P(a) + 1 - \ln P(a|\omega) - 1] = 0$$

Note that this is a convex problem

• FOC WRT $P(a|\omega)$ (assuming >0)

$$u(\mathsf{a}(\omega)) - \rho(\omega) + \lambda[\ln P(\mathsf{a}) + 1 - \ln P(\mathsf{a}|\omega) - 1] = 0$$

Which gives

$$P(a|\omega) = P(a) \exp^{\frac{u(a(\omega)) - \rho(\omega)}{\lambda}}$$

• Plug this into

$$\sum_{\mathbf{a}' \in A} P(\mathbf{a}' | \omega) = 1$$

$$\Rightarrow \exp^{\frac{\rho(\omega)}{\lambda}} = \sum_{\mathbf{a}' \in A} P(\mathbf{a}') \exp^{\frac{u(\mathbf{a}'(\omega))}{\lambda}}$$

Which in turn gives...

Comments

$$P(a|\omega) = \frac{P(a) \exp^{\frac{u(a(\omega))}{\lambda}}}{\sum_{c \in A} P(c) \exp^{\frac{u(c(\omega))}{\lambda}}}$$

- Similar in form to logistic random choice
- If alternatives are ex ante identical, this is logistic choice
- Otherwise choice probabilities are 'warped' by P(a) which contains information on the prior value of each option
 - Important: note that P(a) is endogenous, **not** a parameter
- As costs go to zero, deterministically pick best option in that state
- As costs go to infinity, deterministically pick the best option ex ante

Comments

The MM conditions ignore the constraint

$$P(a|\omega) \geq 0 \ \forall \ a, \omega$$

- Need to know which acts will be chosen with positive probability
- Typically there will be many acts not chosen at the optimum (Jung et al. 2015)
- There will be many solutions to the necessary conditions
- Ideally, would like necessary and sufficient conditions

Necessary and Sufficient Conditions

• Let $z(a, \omega)$ be 'normalized utilities'

$$z(a,\omega) = \exp\left\{\frac{u(a,\omega)}{\lambda}\right\}$$

Note that the MM conditions are

$$P(a|\omega) = \frac{P(a)z(a,\omega)}{\sum_{c \in A} P(c)z(c,\omega)}$$

Necessary and Sufficient Conditions

Theorem

P is consistent with rational inattention with mutual information costs if and only if

$$\begin{split} &\sum_{\omega} \left[\frac{\mu(\omega)z(\mathbf{a},\omega)}{\sum_{c \in A} P(c)z(c,\omega)} \right] & \leq & 1 \text{ all } \mathbf{a} \in A \\ &\sum_{\omega} \left[\frac{\mu(\omega)z(\mathbf{a},\omega)}{\sum_{c \in A} P(c)z(c,\omega)} \right] & = & 1 \text{ all } \mathbf{a} \text{ s.t. } P(\mathbf{a}) > 0 \end{split}$$

and

$$P(a|\omega) = \frac{P(a)z(a,\omega)}{\sum_{c \in A} P(c)z(c,\omega)}$$

- 1 Identify correct unconditional choice probabilities
 - Equality condition for chosen actions
 - · Check inequality condition for unchosen actions
- 2 Read off conditional choice probabilities using MM conditions

Example: Finding the Good Act

- Choose from a set of goods $A = \{a_1, ..., a_N\}$
- Only one of these goods is of high quality
 - *u_h* utility of the high quality good
 - \bullet u_I utility of the low quality good
 - μ_i prior probability that good i is the high quality good
 - WLOG assume $\mu_1 \geq \mu_2 \geq \mu_N$
- Common set up in many psychology experiments

Solution

- Cutoff strategy in prior probabilities: Exists c such that
 - $\mu_i > c \Rightarrow i$ chosen with positive probability
 - $\mu_i < c \Rightarrow i$ never chosen and nothing is learned about their quality
- Endogenously form a 'consideration set'
- Let $\delta = \frac{\exp(\frac{u_h}{\lambda})}{\exp(\frac{u_l}{\lambda})} 1$: 'additional' utility from high act
- Search the best K alternatives, where K solves

$$\mu_{K} > \frac{\sum_{k=1}^{K} \mu_{k}}{K + \delta} \ge \mu_{K+1}.$$

Consideration Set Formation

Can use equality constraints to solve for unconditional choice probabilities

$$P(a_i) = \frac{\mu(\omega_i)(K+\delta) - \sum_{k=1}^K \mu(\omega_k)}{\delta \sum_{k=1}^K \mu(\omega_k)}$$

• MM conditions to solve for conditional choice probabilities

$$P(b|b = u_h) = \frac{P(b)\delta}{\sum_{c \in A} P(c)}$$

Choice Probabilities - Example

- Exponential priors
- $u_h = 1$, $u_l = 0$

Features of the Solution

- 'Consideration set' of alternatives chosen with positive probability
- Mistakes even amongst alternatives in the consideration sets
- Ex ante probability of alternative being good conditional on being chosen is same for all alternatives

Choice Probabilities - Example

Importance of Sufficient Conditions

- The MM necessary conditions could be solved for many possible 'consideration sets'
 - Choosing any option with probability 1 will solve the necessary conditions
 - For any set C with worst alternative $\mu_{\bar{C}}$ there is a solution to the necessary conditions if

$$\frac{\mu_{\bar{C}}}{\sum_{k\in C}\mu_k} > \frac{1}{|C|+\delta}.$$

- Do no reference unchosen actions
- Do not determine whether higher utility could be obtained with a different consideration sets
- This is the advantage of the sufficient conditions

- One case in which this problem becomes more tractable is if the input and output signal are both normal
- The entropy of a normal variable $X \sim N(\mu, \sigma_x^2)$ is given by

$$H(Y) = \frac{1}{2} \ln(2\pi e \sigma_x^2)$$

• If Y and X are both normal, then

$$E(H(Y|X)) = \int_{X} f(x) \int_{Y} f(y|x) \ln f(y|x) d(y) d(x)$$

• As y|x is distributed normally with variance $(1-\rho^2)\sigma_y^2$, this becomes

$$E(H(Y|X)) = \int_{X} f(x) \frac{1}{2} \ln(2\pi e \sigma_{y|x}^{2}) d(x)$$
$$= \frac{1}{2} \ln(2\pi e (1 - \rho^{2}) \sigma_{y}^{2})$$

As mutual information is given by

$$\begin{split} & H(Y) - E(H(Y|X)) \\ = & \frac{1}{2} \ln(2\pi e \sigma_y^2) - \frac{1}{2} \ln(2\pi e (1-\rho^2) \sigma_y^2) \end{split}$$

In this case, the mutual information is given by

$$\frac{1}{2}\ln(1-\rho^2)$$

- So information costs depend only on the covariance of the two signals!
- It turns out that joint normality is optimal if the utility function is quadratic in the relationship between the objective and subjective state
 - Choice of variance on some normally distributed error term
- However, note that some papers assume normality (this is bad)

- In fact, the LQG case may be our best hope of a workhorse rational inattention model that can be applied to a wide range of problems
 - Because it is so simple to solve
- If there are a vector of states and a vector of actions this framework can be used to approximate a number of situations
 - Tracking problems (e.g. Sims [2003], Fultion [2018])
 - Pricing (e.g. Maćkowiak and Wiederholt [2009], Paciello and Wiederholt [2014])
 - Consumption with many sources of income and many goods (e.g. Koszegi and Matejka 2018])
 - Portfolio selection (e.g. Van Nieuwerburg and Veldkamp [2009], Mondria [2010])
- Some of these paper assume that information has to be gathered on each shock separately
 - Either for analytical tractability or realism

- Recent work has provided analytic solutions to the multi state/multi action problem
 - Even when there is prior correlation between states.
- One way to characterize solution [Fulton 2018]
 - DM recombines states α into a set of 'canonical signals'

$$y_c = S\alpha + \varepsilon$$

Where S is a matrix derived from the prior covariance matrix and payoff matrix

- The optimal ε will be distributed normally with the covariance matrix being diagonal.
 - Transforms the original problem into *n* independent problems
- The variance of the noise on each canonical shock is decided by a 'water filling' algorithm
 - Some shocks will have no attention paid to them, the others will have attention paid to equalize cost and benefits

- For further information see
 - Fulton, C "The Extensive Margin of Attention" [2019]
 - Miao, Jianjun, Jieran Wu, and Eric Young. "Multivariate Rational Inattention". working paper, Boston University, [2019]
 - Dewan, A "Costly Multidimensional Information", Working paper [2019]
 - Koszegi, Botond, and Filip Matejka. "An attention-based theory of mental accounting." [2018]
- Or ask our very own Hassan Afrouzi!

- There is another way to approach this problem which possibly gives more insight
- Assume we are choosing Q, a (simple) distribution over posterior beliefs, with $Q(\gamma)$ the probability of belief γ
- We can also work with a generalized cost function

$$\sum_{\Gamma} Q(\gamma) T(\gamma) - T(\mu)$$

where T is some strictly convex function

- For example, we could replace Shannon entropy with other types of entropy.
- Call this the class of 'uniformly posterior separable' cost functions

 One way to gain insight into what is going on is to rewrite the objective function

$$\sum_{\Gamma} Q(\gamma) \left[\max_{a \in A} \sum_{\Omega} \gamma(\omega) u(a, \omega) \right] - \left[\sum_{\Gamma} Q(\gamma) T(\gamma) - T(\mu) \right]$$

$$= \sum_{\Gamma} Q(\gamma) \left[\max_{a \in A} \sum_{\Omega} \gamma(\omega) u(a, \omega) - T(\gamma) \right] + T(\mu)$$

$$= \sum_{\Gamma} Q(\gamma) \max_{a \in A} N_a(\gamma)$$

• Each γ and a has a net utility associated with it

$$\mathit{N}_{\mathit{A}}(\gamma) = \sum_{\mathtt{a}} \gamma(\omega) \mathit{u}(\mathtt{a},\omega) - \left[\mathit{T}(\gamma) - \mathit{T}(\mu)\right]$$

 Aim is to pick distribution of posteriors which maximizes the expected value of net utilities subject to

$$\sum_{\gamma \in \Gamma(\pi)} Q(\gamma) \gamma = \mu$$

Net Utility

• Consider a simple case with two states and two acts

Action	Payoff in state 1	Payoff in state 2
а	10	0
b	0	10

Net Utility

Optimal Strategy

- What to find the posteriors which support the highest chord above the prior
- The solution for every possible prior defined by the lower epigraph of the concavified net utility function

Finding the Optimal Strategy

 Optimal posteriors identified by hyperplane that supports the set of feasible net utilities.

Theorem

Given decision problem $(\mu, A) \in \Gamma \times \mathcal{F}$ a set of posteriors are rationally inattentive if and only if:

1 Invariant Likelihood Ratio (ILR) Equations for Chosen Acts: given a, $b \in B$, and $\omega \in \Omega$,

$$\frac{\gamma^{a}(\omega)}{z(a(\omega))} = \frac{\gamma^{b}(\omega)}{z(b(\omega))}$$

2 Likelihood Ratio Inequalities for Unchosen Acts: given act a chosen with positive probability and $b \in A$,

$$\sum_{\omega \in \Omega} \left[\frac{\gamma^{\mathsf{a}}(\omega)}{z(\mathsf{a}(\omega))} \right] z(b(\omega)) \le 1.$$

Behavioral Properties

- We have necessary and sufficient conditions to characterize the Shannon model
- But these do not necessarily help us understand the behaviors that it predicts
- Also results apply only to the Shannon Model
- Might be helpful to have a more 'behavioral' characterization
 - See Caplin, Dean and Leahy [2019]
- Define two additional classes of model
 - Separable

$$\sum_{\Gamma} Q(\gamma) T_{\mu}(\gamma) - T_{\mu}(\mu)$$

Posterior Separable

$$\sum_{\Gamma} Q(\gamma) T_{\mu}(\gamma) - T_{\mu}(\mu)$$

Posterior Separability

- Turns out that we can characterize using three behavioral axioms
 - Plus some technical ones that we won't bother with
- Separability
- 2 Locally Invariant Posteriors
- 3 Invariance Under Compression

Separability

Separability

Separability

- Separability states you can always do this
 - For any set of chosen acts and associated posteriors
 - Can switch out one posterior and replace it with another posterior
 - · Changing only the associated act.
- This is a property of the Separable model

Locally Invariant Posterior

• Example: 2 states, 2 actions

Action	Payoff in state 1	Payoff in state 2
f^1	X	0
f ²	0	X

Behavior at 0.5 Prior

Behavior for prior<a

Behavior for prior>a

Same Posteriors as for 0.5 prior

No Information Gathered

Locally Invariant Posteriors

- Locally Invariant posteriors: If a set of posteriors $\{\gamma^a\}_{a\in A}$ are optimal for decision problem $\{\mu,A\}$ and are also feasible for $\{\mu',A\}$ then they are also optimal for that decision problem
- Choice probabilities move 'mechanically' with prior to maintain posteriors
- Useful in, for example, models in which consumers are rationally inattentive to quality
 - As the prior distribution of quality changes, posterior beliefs do not
 - See Martin [2014]
- This is a property of the Uniformly Posterior Separable Model

Invariance Under Compression

- The Shannon model is clearly 'special' in many ways in the class of UPS model
- The literature has noted many properties
 - Symmetry
 - Separability of Orthogonal Decisions
 - Lack of Complementarities
- All of these properties can be captured in a single axiom
 - Invariance Under Compression

Invariance Under Compression - An Example

• Consider decision problem (i)

State	ω_1	ω_2
Prior Prob	0.5	0.5
Payoff Action A	10	0
Payoff Action B	0	10

• And now decision problem (ii) which splits ω_2

State	ω_1	ω_2	ω_3
Prior Prob	0.5	0.2	0.3
Payoff Action A	10	0	0
Payoff Action B	0	10	10

Invariance Under Compression - An Example

- How should behavior change between the two decision problems?
- In principal, many things could happen
 - Could be harder to learn about two states that one, so less accurate in (ii) than (i)
 - Could be easier to learn about two states that one, so more accurate in (ii) than (i)
- Shannon model says that behavior should not change
 - $P_i(a|\omega_2) = P_{ii}(a|\omega_2) = P_{ii}(a|\omega_3)$

Behavioral Characterization

- Invariance under Compression formalizes this
- Defines the concept of a 'basic' decision problem
 - · No two states have the same payoff for all acts
- Every decision problem has associated basic forms
- Choice behavior the same when moving between decision problems and their basic forms
- Corollaries
 - Behavior the same in every state which is payoff equivalent
 - Moving prior probabilities between payoff equivalent states does not change behavior

Summary

- Introduced Shannon Mutual Information as a potential cost function
 - Popular in the literature
 - 'Cobb Douglas' vs 'Revealed Preference'
- Introduced some analytical tools to help solve the Shannon model
 - MM necessary conditions
 - Necessary + Sufficient Conditions
 - Posterior-based approach
 - Behavioral characterization
- Shown that the Shannon model can give rise to endogenous consideration set formation