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Introduction

• We have now described the mechanics behind the rational
inattention model

• We are not going to talk through some experimental evidence
• General model
• Shannon model

• And some applications
• Attention to quality
• Discrimination
• Elections
• Dynamic Rational Inattention



Experimental Results

• Introduce an experimental interface that can be used to
collect state dependent stochastic choice data

• Use it to perform some tests of both the general and Shannon
models

1 Spillovers

• RI vs EUM

2 Change in payoffs

• RI vs Signal Extraction
• Test ILR of Shannon model

3 Change in priors

• Locally Invariant Posteriors

4 Many States

• Test Invariance under Compression



Experimental Design

Action Payoff 49 red balls Payoff 51 red balls
a 10 0
b 0 10

• No time limit: trade off between effort and financial rewards
• Prizes paid in probability points



An Aside: Testing Axioms with Stochastic Data

• Much of the following is going to come down to testing
axioms of the following form

P(a|1) ≥ P(a|2)

• These are conditions on the population probabilities
• We don’t observe these, instead we observe sample estimates
P̄(a|1) and P̄(a|2)

• What to do?



An Aside: Testing Axioms with Stochastic Data

• We can make statistical statements about the validity of the
axioms

• But there are two was to do this
1 Can we reject a violation of the axiom

• i.e., is it the case that P̄(a|1) > P̄(a|2) and we can reject the
hypothesis that P(a|1) = P(a|2) at (say) the 5% level

2 Can we find a significant violation of the axiom

• i.e. is it the case that P̄(a|1) < P̄(a|2) and we can reject the
hypothesis that P(a|1) = P(a|2) at (say) the 5% level

• (1) Is clearly a much tougher test that (2)
• If we have low power we will never be able to do (1)



Splliovers

• Recall that RUM implies monotonicity

• For any two decision problems {A,A∪ b}, a ∈ A and b /∈ A

PA(a|ω) ≥ PA∪b(a|ω)

• Rational Inattention can lead to violations of monotonicity

Act Payoff 49 red dots Payoff 51 red dots
a 23 23
b 20 25
c 40 0

• Does this happen in practice?



Experiment 2: Spillovers

Table 1: Experiment 1

Payoffs

DP U(a, 1) U(a, 2) U(b, 1) U(b, 2) U(c, 1) U(c, 2)
1 50 50 b1 b2 n/a n/a

2 50 50 b1 b2 100 0

Table 2: Treatments for Exp. 1

Treatment Payoffs

b1 b2
1 40 55

2 40 52

3 30 55

4 30 52



Experiment 2: Spillover

Table 8: Results of Experiment 1

P(b|1) P(b|2)
Treat N {a, b} {a, b, c} Prob {a, b} {a, b, c} Prob

1 7 2.9 6.8 0.52 50.6 59.8 0.54

2 7 5.7 14.7 0.29 21.1 63.1 0.05

3 7 9.5 5.0 0.35 21.4 46.6 0.06

4 7 1.1 0.8 0.76 19.9 51.7 0.02

Total 28 4.8 6.6 0.52 28.3 55.6 <0.01



Expansion

• How does information gathering change with incentives?
• Simplest possible design: two states and two acts
• Change the value of choosing the correct act
• Can test

• NIAS
• NIAC
• LIP



Expansion:

Experiment 2
Decision Payoffs
Problem U(a, 1) U(a, 2) U(b, 1) U(b, 2)
1 5 0 0 5
2 40 0 0 40
3 70 0 0 70
4 95 0 0 95

• States equally likely
• Increase the value of making the correct choice

• Payment in probability points

• 52 subjects



Testing NIAC and NIAS

• In the symmetric 2x2 case, NIAS and NIAC have specific
forms

• NIAS:

PA(a|ω1) ≥ max {αPA(a|ω2), αPA(a|ω2) + β} , (1)

where

α =
u(b(ω2))− u(a(ω2))

u(a(ω1))− u(b(ω1))

β =
u(a(ω1)) + u(a(ω2))− u(b(ω1))− u(b(ω2))

(a(ω1))− u(b(ω1))

• In this case boils down to

P(a|ω1) ≥ P(a|ω2)



Testing NIAC and NIAS

• NIAC:

∆P(a|ω1) (∆ (u(a(ω1))− u(b(ω1)))) + (2)

∆P(b|ω2) (∆ (u(b(ω2))− u(a(ω2)))) (3)

≥ 0 (4)

• In this case boils down to

P1(a|ω1) + P1(b|ω2)

≤ P2(a|ω1) + P2(b|ω2)

≤ P3(a|ω1) + P3(b|ω2)

≤ P4(a|ω1) + P4(b|ω2)



Do People Optimally Adjust Attention?

• Alternative model: Choose optimally conditional on fixed
signal

• e.g. Signal detection theory [Green and Swets 1966]

• In general, choices can vary with incentives
• Changes optimal choice in posterior state

• But not in this case
• Optimal to choose a if γ1 > 0.5, regardless of prize

• Change in choice between decision problems rules out Signal
Detection Theory

• Also rational inattention with fixed entropy



Testing NIAS: Experiment 1

• NIAS test: For each decision problem

P(a|1) ≥ P(a|2)

• From the aggregate data

Table 2: NIAS Test

DP Pj (a|1) Pj (a|2) Prob

1 0.74 0.40 0.000

2 0.76 0.34 0.000

3 0.78 0.34 0.000

4 0.78 0.27 0.000



Testing NIAC: Experiment 1



NIAC And NIAS: Individual Level

Violate %
NIAS Only 2
NIAC Only 17
Both 0
Neither 81

• Counting only statistically significant violations



Recovering Costs - Individual Level



Invariant Likelihood Ratio and Responses to Incentives

• We can also use the same data to test a key implication of the
Shannon model

• Invariant Likelihood Ratio

• For chosen actions our condition implies

u(a(ω))− u(b(ω))
ln γ̄a(ω)− ln γ̄b(ω)

= λ

• Constrains how DM responds to changes in incentives



Invariant Likelihood Ratio - Example

Experiment 2
Decision Payoffs
Problem U(a, 1) U(a, 2) U(b, 1) U(b, 2)
1 5 0 0 5
2 40 0 0 40
3 70 0 0 70
4 95 0 0 95

5
ln γ̄a(5)− ln γ̄b(5)

=
40

ln γ̄a(40)− ln γ̄b(40)
= ... = λ

• One observation pins down λ

• Determines behavior in all other treatments



Invariant Likelihood Ratio - Example

• Observation of choice accuracy for x = 5 pins down λ



Invariant Likelihood Ratio - Example

• Implies expansion path for all other values of x
• This does not hold in our experimental data



Invariant Likelihood Ratio - An Experimental Test



Individual Level Data

• Predicted vs Actual behavior in DP 4 given behavior in DP 1
• 44% of subjects adjust significantly more slowly than Shannon
• 19% significantly more quickly



Changing Priors

• How does information gathering change with prior beliefs?
• Simplest possible design: two states two acts
• Change the relative prior probability of the states



Experiment 2

Experiment 3
Decision Payoffs
Problem µ(1) U(a(1)) U(a(2)) U(b(1)) U(b(2))
1 0.50 10 0 0 10
2 0.60 10 0 0 10
3 0.75 10 0 0 10
4 0.85 10 0 0 10

• Two unequally likely states
• Two actions (a and b)
• 54 subjects



Questions

1 Are people rational?

• i.e. do they respect NIAS

2 Do costs look like they are Posterior Separable

• i.e. do they obey Locally Invariant Posteriors



Testing NIAS

• NIAS test: For each decision problem

P(a|1) ≥ 2µ1 − 1
µ1

+
1− µ1

µ1
P(a|2)

• From the aggregate data

DP Pj (a|2) Constraint on Pj (a|1) Pj (a|1) Prob

5 0.29 0.29 0.77 0.000

6 0.38 0.39 0.88 0.000

7 0.40 0.80 0.90 0.045

8 0.51 0.91 0.91 0.538



Testing NIAS

• NIAS test: For each decision problem

P(a|1) ≥ 2µ1 − 1
µ1

+
1− µ1

µ1
P(a|2)

• Individual level data

Prior 0.5 0.6 0.75 0.85
% Significant Violations 0 2 2 11



Locally Invariant Posteriors

• Each subject has ‘threshold belief’
• Determined by information costs

• If prior is within those beliefs
• Both actions used
• Learning takes place
• Same posteriors always used

• If prior is outside these beliefs
• No learning takes place
• Only one action used



Results

• Distribution of thresholds for 54 subjects

Posterior Range N %

[0.5,0.6) 14 25

[0.6,0.75) 12 22

[0.75,0.85) 12 22

[0.85,1] 16 29



Results

• Fraction of subjects who gather no information and always
choose a

Table 10: Testing the ‘No Learning’Prediction:

Fraction of subjects who never choose b
µ(1)

DP8 DP9 DP10

0.6 0.75 0.85

Significant differences γa7(1) < µi (1) 33% 46% 41%

γa7(1) ≥ µi (1) 3% 10% 14%



Results - Threshold Greater than 0.6



Results - Threshold Greater than 0.75



Results - Threshold Greater than 0.85



Symmetry

• Compression axiom: distinguishes Shannon from the more
general posterior separable model

• Optimal revealed posteriors depend only on the relative value
of acts in that state

• Implies that there is no concept of ‘perceptual distance’



A Simple Example

• N equally likely states of the world {1, 2.....,N}
• Two actions

Payoffs
States 1, ...N2

N
2 + 1, ..,N

action f 10 0
action g 0 10

• Mutual Information predicts a quantized information structure
• Optimal information structure has 2 signals
• Probability of making correct choice is independent of state

exp
(
u(10)

κ

)
1+ exp

(
u(10)

κ

)



Predictions for the Simple Problem - Shannon

• Probability of correct choice does not go down near threshold



Predictions for the Simple Problem - Shannon

• Not true of other information structures (e.g. uniform signals)



An Experimental Test

Action Payoff ≤ 50 Red Payoff > 50 Red
f 10 0
g 0 10



Balls Experiment

• Probability of correct choice significantly correlated with
distance from threshold (p<0.001)



Can we Improve on Shannon?

• These experiments tested three key properties of Shannon
• Locally Invariant Posteriors
• Invariant Likelihood Ratio
• Invariance Under Compression (and in particular symmetry)

• LIP did okay(ish), the others did pretty badly
• Expansion path problem
• Symmetry problem

• Can we modify the Shannon model to better fit this data?
• And in doing so do we provide a quantitatively better fit of
the data?



Expansion Path

• To fix the expansion path problem there are two obvious
routes

1 Posterior Separable cost functions

K (µ,π) = ∑
Γ
Q(γ)T (γ)− T (µ)

• e.g. we could use Generalized Entropy

TGenρ (γ) =


(

1
(ρ−2)(ρ−1)|Γ| ∑Γ γ̂2−ρ − 1

)
if ρ 6= 1 and ρ 6= 2;

1
|Γ| (∑Γ γ̂ ln γ̂) if ρ = 1;

− 1
|Γ| (∑Γ ln γ̂) if ρ = 2.

2 Drop the assumption that costs are linear is Shannon mutual
information

K (µ,π) = κ

(
∑

γ∈Γ(π)
π(γ) [−H(γ)]− [−H(µ)]

)σ



Symmetry

• It is fairly obvious why symmetry fails
• Nearby states are harder to distinguish than those further away
• Shannon cannot take this into account

• Hebert and Woodford [2017] propose a solution
• Divide the state space into I overlapping ’neighborhoods’
X1...XI

• An information structure is assigned a cost for each
neighborhood based on the prior and posteriors conditional on
being in that neighborhood

• Total costs is the sum across all neighborhoods

I

∑
i=1

µ(Xi )∑
γ

Q(γ|Xi ) [−H(γ|Xi )]− [−H(µ|Xi )]

• Has a number of attractive features
• Introduces perceptual distance to Shannon-like models
• Qualitatively fits data from psychometric experiments
• Can be ‘microfounded’as resulting from a process of
sequential information acquisition



Applying Alternative Cost Functions

• We can combine these ideas to come up with a family of cost
function to estimate

1 Linear mutual information with neighborhoods
• Assume one global neighborhood, plus one neighborhood for
each sequential pair of states

• Cost within each neighborhood based on mutual information
• Two parameters:

• κg : marginal cost of information for the global neighborhood
• κl : marginal cost of information for each of the local
neighborhoods

2 Non-linear mutual information with neighborhoods
• As (1), but costs raised to a power
• Introduces one new parameter σ

3 General mutual information with neighborhoods
• As (1) but mutual information replaced with expected change
in generalized entropy

• Introduces one new parameter ρ



Fitted Values (Estimated Separately on Each Experiment)



Fitted Values (Estimated Jointly)



Parameter Estimates

Table 12: Parameter Estimates - Aggregate Data
Model κg κl σ ρ BIC AIC

Experiment 2 Only
NHood 28.82 - - - 379 372

Power 7728.00 - 4.23 - 55 41

Generalized 0.16 - - 13.41 56 42

Experiment 4 Only
Shannon 7.38 - - - 485 479

NHood 5.40 5.04 - - 326 313

Power w/NHood 4.98 5.63 0.94 - 334 315

Generalized w/NHood 5.36 4.99 - 1.05 334 315



Parameter Estimates

Table 12: Parameter Estimates - Aggregate Data
Model κg κl σ ρ BIC AIC

Experiment 2 and 4
Shannon 23.49 - - - 1689 1681

NHood 25.08 0.38 - - 1690 1675

Power w/NHood 299.50 99.40 2.98 - 670 647

Generalized w/NHood 0.05 2.92 - 13.01 647 624



Application

• There are many ’classic’applications or rational inattention
• Slow adjustment in macro models (e.g. Sims [2003],
Mackowiak and Wiederholdt [2015])

• Pricing (e.g. Mackowiak and Wiederholdt [2009], Matejka
[2015, 2016])

• Portfolio selection (e.g. Van Nieuwerburg and Veldkamp
(2009), Mondria (2010))

• I am not going to concentrate on these, mainly because Mike
will cover them in some detail in his course
• See for a nice discussion Mackowiak, Bartosz, Filip Matejka,
and Mirko Wiederholt. "Rational Inattention: A Disciplined
Behavioral Model.", working paper (2018).

• Instead cover some more recent, easoteric applications
• Rational inattention to quality
• Discrimination
• Elections
• Dynamic Rational Inattention



Application: Price Setting with Rationally Inattentive
Consumers

• Consider buying a car
• The price of the car is easy to observe
• But quality is diffi cult to observe
• How much effort do consumers put into finding out quality?
• How does this affect the prices that firms charge?
• This application comes from Martin [2017]



Application: Price Setting with Rationally Inattentive
Consumers

• Model this as a simple game
1 Quality of the car can be either high or low
2 Firm decides what price to set depending on the quality
3 Consumer observes price, then decides how much information
to gather

4 Decides whether or not to buy depending on their resulting
signal

5 Assume that consumer wants to buy low quality product at
low price, but not at high price

• Key point: prices may convey information about quality
• And so may effect how much effort buyer puts into
determining quality



Market Setting

• One off sales encounter
• One buyer, one seller, one product



Market Setting

• Nature determines quality θ ∈ {θL, θH}
• Prior µ = Pr (ωH )



Market Setting

• Seller learns quality, sets price p ∈ {pL, pH}



Market Setting

• Buyer learns p, forms interim belief µp (probability of high
quality given price)

• Based on prior µ and seller strategies



Market Setting

• Choose attention strategy contingent on price
{

πH ,πL
}

• Costs based on Shannon mutual information



Market Setting

• Nature determines a signal
• Posterior belief about product being high quality



Market Setting

• Decides whether to buy or not
• Just a unit of the good



Market Setting

• Standard utility and profit functions (risk neutral EU)
• u ∈ R+ is outside option, K ∈ R+ is Shannon cost



Equilibrium

• How do we make predictions in this setting?
• We need to find

• A pricing strategy for low and high quality firms
• An attention strategy for the consumer upon seeing low and
high prices

• A buying strategy for the consumers

• Such that
• Firms are optimizing profits given the behavior of the
customers

• Consumers are maximizing utility given the behavior of the
firms



Equilibrium

• There is no equilibrium in which low quality firm charges pL
and high quality firm charges pH

• Why?
• If this were the case, the consumer would be completely
inattentive with probability 1 at both prices

• Price conveys all information

• Incentive for the low quality firm to cheat and charge the high
price

• Would sell with probability 1



Equilibrium

• Always exists “Pooling low”Equilibrium
• High quality sellers charge a low price with probability 1
• Low quality sellers charge a low price with probability 1
• Buyer believes that high price is a signal of low quality

• However, this is not a ‘sensible’equilibrium:
• Perverse beliefs on behalf of the buyer:
• High price implies low quality
• Allowed because beliefs never tested in equilibrium



Equilibrium

Theorem
For every cost κ, there exists an equilibrium (“mimic high”) where
high quality sellers price high with probability 1 and low quality
sellers price high with a unique probability η ∈ [0, 1].



Explaining the Equilibrium

• How do rationally inattentive consumers behave?
• If prices are low, do not pay attention
• If prices are high, choose to have two signals

• ‘bad signal’- with high probability good is of low quality
• ‘good signal’- with high probability good is of high quality

• Buy item only after good signal



Explaining the Equilibrium

• Give rise to two posteriors (prob of high quality):
• γ0pH (bad signal)
• γ1pH (good signal)

• We showed that these optimal posterior beliefs are determined
by the relative rewards of buying and not buying in each state

ln

(
γ1pH
γ0pH

)
=

(θH − pH )− u
κ

ln

(
1− γ1pH
1− γ0pH

)
=

(θL − pH )− u
κ



Explaining the Equilibrium

• Let µpH (H) be the prior probability that the good is of high
quality given that it is of high price

• Let d θL
pH be the probability of buying a good if it is actually low

quality if the price is high:

• i.e πpH (γ
1
pH |θL)

• Using Bayes rule, we can show:

d θL
pH =

(
1−γ1pH

γ1pH
−γ0pH

)(
µpH (H)− γ0pH

)
(
1− µpH (H)

)
• Conditional demand is

• Strictly increasing in interim beliefs µpH
• So strictly decreasing in ‘mimicking’η



Firm Behavior

• What about firm behavior?

• If the low quality firm sometimes prices high and sometimes
prices low, we need them to be indifferent between the two

d θL
pH × pH = pL ⇒ d θL

pH =
pL
pH

• As low quality firms become more likely to mimic, it decreases
the probability that the low quality car will be bought

• And so reducs the value of setting the high price



Firm Behavior



Equilibrium

• What is the unique value of η when η ∈ (0, 1)?

η =
κ

1− κ

(
1− γ0pH

) (
1− γ1pH

)
γ0pH

(
1− γ1pH

)
+ pL

pH

(
γ1pH − γ0pH

)
• We can use a model of rational inattention to solve form

• Consumer demand
• Firm pricing strategies

• Can use the model to make predictions about how these
change with parameters of the model

• E.g as κ → 0, η → 0



Discrimination [Bartos et al 2016]

• A second recent application of the rational inattention model
has been to study discrimination

• Imagine you are a firm looking to recruit someone for a job

• You see the name of the applicant at the top of the CV
• This gives you a clue to which ‘group’an applicant belongs to

• e.g. British vs American

• You have some prior belief about the abilities of these groups
• e.g. British people are worse than Americans

• Do you spend more time looking at the CVs of Brits or
Americans?



A Formal Version of the Model

• You are considering an applicant for a position
• Hiring for a job
• Looking for someone to rent your flat

• An applicant is of quality q, which you do not observe
• If you hire the applicant you get payoff q
• Otherwise you get 0



Information

• Initially you get to observe which group the applicant comes
from

• Brits (B) or Americans (A)

• Your prior beliefs depend on this group
• If the persion is British you believe

q ∼ N(qB , σ2)

• American
q ∼ N(qA, σ2)

with qB < qA
• This is your ‘bias’



Information

• Before deciding whether to hire the applicant you receive a
normal signal

y = q + ε

Where ε ∼ N(0, σ2ε )
• You get to choose the precision of the signal

• i.e. get to choose σ2ε

• Pay a cost based on the precision of the signal
• M(σ2ε )

• Note, it doesn’t have to be the case that costs are equal to
Shannon

• Only assume that lower variance gives higher costs



Information

• What are the benefits of information?
• What do you believe after seeing signal if variance is σ2ε ?

q′ = αy + (1− α)qG

Where qG is the beliefs given the group (i.e. qB or qA)

α =
σ2

σ2 + σ2ε

• As signal gets more precise (i.e σ2ε falls) then

• More weight is put on the signal
• Less weight put on the bias

• If information was free then bias wouldn’t matter



Information

• If you got signal y , what would you choose?
• If

q′ = αy + (1− α)qG > 0

• Will hire the person
• Otherwise will not



Information

• Value of the information structure is the value of the choice
for each y

max {αy + (1− α)qG , 0}
• Integrated over all possible values of y

G (σ2ε ) =
∫ ∞

− (1−α)
α qG

αy + (1− α)qG dy



Information

• So the optimal strategy is to

1 Choose the precision of the signal σ2ε to maximize

G (σ2ε )−M(σ2ε )

2 Hire the worker if and only if

αy + (1− α)qG > 0

or

ε > q +
(1+ α)

α
qG



Questions

• What type of question can we answer with this model?

1 Do Brits or Americans recieve more attention

2 Does ‘Rational Inattention’help or hurt the group that
descriminated against?

• i.e. would Americans do better or worse if σ2ε had to be the
same for both groups?



Cherry Picking or Lemon Dropping

• It turns out the answer depends on whether we are in a
‘Cherry Picking’or ‘Lemon Dropping’market

• Cherry Picking: would not hire the ‘average’candidate from
either group

• i.e. qB < qA < 0
• Only candidates for which good signals are received are hired
• e.g. hiring for a job

• Lemon Dropping: would hire the ‘average’candidate from
either group

• i.e. 0 < qB < qA
• Only candidates for which bad signals are recieved are not hired
• e.g. looking for people to rent an apartment



Theorem

Theorem
In Cherry Picking markets, the ‘worse’group gets less attention,
and rational attention hurts the ‘worse’group

Theorem
In Lemon Dropping markets, the ‘worse’group gets more
attention, and rational attention hurts the ‘worse’group

• ’Hurts’in this case means relative to a situation in which the
‘worse’group had to be given the same attention as the
‘better’group

• Minorites get screwed either way!



Theorem

• Intuition:

1 Attention is more valuable to the hirer the closer a group is
from the threshold on average

• If you are far away from the threshold, less likely information
will make a difference to my choice

• In the cherry picking market the ‘worse’group is further away
from the threshold, and so get less attention

• In the lemon dropping market the worse group is closer to the
threshold and gets more attention

2 Attention is more likely to get you hired in the cherry picking
market, less likely to get you hired in the lemon dropping
market

• In the first case only hired if there is high quality evidence that
you are good

• In the latter case hired unless there is high quality evidence
that you are bad



Experimental Evidence

• Market 1: Lemon Dropping - Housing Applications
• Market 2: Cherry Picking - Job Applications
• Experiment run in Czech Republic
• In each case used dummy applicants with different ‘types’of
name

• White
• Asian
• Roma



Housing Market



Job Market



Voting

• Voters are typically not very well informed
• However, the spread of information is not uniform or random

• Which voters choose to get informed about which issue?
• How does this impact the formation of policies
• These issues are discussed in Matejka and Tabellini [2018]



Set Up

• Two candidates A and B
• Pick policy platform: vector qC in order to maximize prob of
winning an election

• N groups of voters
• Each group contains a coninuum of voters of mass mJ

• Utility of voter v in group J if each candidate wins is

Uv ,JA = UJ (qA)

Uv ,JB = UJ (qB ) + x
v

xv = x̂ + x̂V



Rational Inattention in Games

• This is going to be a game between the candidates and the
voters

• Applying rationakl inattention to game theory is hard
• In equilibrium, strategy of other players is ’known’
• What to learn about?

• Typically it is assumed that learning is about some exogenous
state

• Though even here there is complications
• e.g. would like my learning to be correlated with that of other
people

• For discussions see
• Denti "Unrestricted Information Acquisition", 2019
• Morris and Yang "Coordination and Continuous Stochastic
Choice 2019

• Afrouzi, Hassan. "Strategic inattention, inflation dynamics and
the non-neutrality of money." 2017

• Martin, Daniel, and Edwin Muñoz-Rodriguez. "Misperceiving
Mechanisms: Imperfect Perception and the Failure to
Recognize Dominant Strategies." 2019



Set Up

• Assume that there is some irreducible noise around the
candidate’s platform

• Candidate chooses q̂c , actual platform

qC ,i = q̂C ,i + εC ,i with εC ,i ∼ N(0, σ2C ,i )

• Voters recieve a normal signal

sv ,JC ,i = qC ,i + εv ,JC ,i with εv ,JC ,i ∼ N(0,γ
J
C ,i )

• Define ζJC ,i =
σ2C ,i

σ2C ,i+γJC ,i

• Choose variance optimally
• Costs based on entropy
• Benefits?



Set Up

• Sequence of events
1 Voters form priors and choose attention strategies
2 Candidates choose platforms
3 Voters observe signal
4 xv is realized and election is held

• Voters vote for candidate A if

E [UJ (qA)|sv ,JA ]− E [UJ (qB )|sv ,JB ] > xv

• In equilibrium
• Voter priors correct given candidate strategies
• Voter information aquisition optimal given these priors
• Candidates strategies optimal given strategies of voters



Results

• If information costs are zero this boils down to a standard
voting model

• Probability of each candidate winning is increasing in their
social welfare

• A’s probability of winning is

pA =
1
2
+ φ

[
∑
J

mJ
(
UJ (qA

)
−
(
UJ (qB

)
)

]

• where φ is a constant

• If attention is constly, this gets replaced by

pA =
1
2
+φE Jε,qA ,qB

[
∑
J

mJ (E (UJ (qA |sv ,JA )− E (UJ (qB |sv ,JB ))

]

• The percieved social welfare function



Results

• Each candidate will try to maximize their percieved social
welfare

• If information is free then the weight of each group is just its
size mJ

• If attention is costly, then differential attention can play a role
• Indeed, if we can use a quadratic approximation for utility
then FOC become

∑
J

mJ ζJC ,iu
J
C ,i = 0

• where uJC ,i =
∂uJ (qC ,i )

∂qJ ,i
• Under the same approximation, the benefits of attention are
given by

∑
C

∑
i

ζJC ,i

(
uJC ,i

)2
σ2C ,i

• This is the variance of the difference in expected utility



Application

• To see how these forces play out, consider the case in which
there is only one dimention

• Bliss point of group J is tJ
• Cost of attention for group J is ΛJ
• UJ (q) = U(q − tJ ) where U is concave and symmetric

• Note: Voters pay more attention for q̄C further away from tJ

as marginal utility is higer

• Voters with extreme preferenes have higher stakes

• With only two voters we have

ζ1C u
1(qC )

ζ2C u2(qC )
= −m

2

m1

• Smaller groups will pay more attention
• Rational inattention offsets difference in group size



Application

• Other results
• RI aplifies the effect of preference intensity and dampens effect
of group size

• Groups with lower attention cost get higher weight (possibly
larger groups)?

• More general predictions depend on the distribution of bliss
points

• If distribution is asymmetric, those in longer tail pay more
attention

• In general RI must lower social welfare, distroting towards
more informed groups

• If candidates have different costs, higher cost candidate will
pander to the more extreme voters

• Parties as labels



Dynamic Rational Inattention

• So far we have dealt exclusively with static rational
inattention problems

• Of course many interesting problems have a dynamic aspect
• A recent literature has addressed these issues



Dynamic Rational Inattention

• Two branches
1 ’Stopping problems’: Dynamic accrual of information prior to
making a choice

• Hébert, Benjamin, and Michael Woodford. Rational
inattention and sequential information sampling. No. w23787.
National Bureau of Economic Research, 2017.

• Zhong, Weijie. "Optimal dynamic information acquisition."
2017.

• Fudenberg, Drew, Philipp Strack, and Tomasz Strzalecki.
"Speed, accuracy, and the optimal timing of choices."
American Economic Review 108.12 (2018): 3651-84.

2 ’Dynamic problems’: Make a choice in every period

• Steiner, Jakub, Colin Stewart, and Filip Matějka. "Rational
Inattention Dynamics: Inertia and Delay in Decision-Making."
Econometrica 85.2 (2017): 521-553.

• Miao, Jianjun, and Hao Xing. Dynamic Rationally Inattentive
Discrete Choice: A Posterior-Based Approach. 2019.

• Mike will cover these literatures in more detail in his class



Dynamic Rational Inattention

• Steiner, Stewart and Matejka (SSM) write down conditions
for optimality in a dynamic RI problem

• Costs linear in mutual information

• First observation: if costs are linear in mutual information
then actions are suffi cient statistics for signals

• So we can model choice of actions directly

• This is obvious in the static case
• Less obvious in the dynamic case

• Maybe want to gather information earlier than needed to
smooth information costs

• But linear mutual information costs have no such smoothing
motive

• See also Afrouzi and Yang [2019]



Dynamic Rational Inattention

• Second observation: Dynamic problem can be reduced to a
sequence of static problems

• Let p be a dynamic choice strategy (i.e stochastic mapping
from Θt to ∆(A) for every t

• p is an interior optimum if, at every history z it solves the
static RI problem with
• State space Θt
• Prior µ(θt ) = πp(θt−1 |z t−1)π(θt |θt−1)
• And utility function

û(a, θt , z t−1) = û(a, θt ) + δEVt+1
(

θt+1
)
|at , θt , z t−1)

Vt+1
(

θt+1
)

= ln∑
at
p(at |z t−1) exp û(a, θt , z t−1)

• where z t is the history of actions and exogenous signals

• This solution can still be very cumbersome
• Miao offer an aletrnative using posteriors as states
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