Context Effects

Mark Dean

Behavioral Economics G6943 Fall 2016

- We will now think about context effects that are more general than simple reference dependence
- Standard Model: Adding options to a choice set can only affect choice in a very specific way
 - Either a new option is chosen or it isn't
 - Independence of Irrelevant Alternatives
- Work from economics, neuroscience and psychology suggest a different channel
 - Change the *context* of choice
 - i.e. the distribution of values in a choice set
 - Adding option x can affect the relative evaluation of y and z
 - Violation of IIA

- We are going to consider two data sets in which these type of context effects can be observed
- Stochastic Choice
 - Divisive Normalization: Louie, Khaw and Glimcher [2013]
- 2 Choice between multidimensional alternatives
 - Relative Thinking: Bushong, Rabin and Schwartzstein [2015]
 - Salience: Bordalo, Gennaioli and Shleifer [2012]
 - These articles are going to be in a somewhat different style to what we have seen so far

A Neuroscience Primer

- The brain needs some way of representing (or encoding) stimuli
 - Brightness of visual stimuli
 - Loudness of auditory stimuli
 - Temperature etc.
- Typically, a given brain region will have the task of encoding a particular stimuli at a particular point in space and time
 - e.g. the brightness of a light at a particular point in the visual field
- How is this encoding done?
- A 'naive' mode: neural activity encodes the absolute value of the stimuli

$$\mu_i = KV_i$$

- μ_i : neural activity in a particular region
- V_i: The value of the related stimuli

A Neuroscience Primer

 Encoding depends not only on the value of the stimuli, but also on the context [Carandini 2004]

A Neuroscience Primer

Divisive Normalization:

$$\mu_i = K \frac{V_i}{\sigma_H + \sum_j w_j V_j}$$

- σ_H : Normalizing constant (semi-saturation)
- w_i: Weight of comparison stimuli j
- V_j: Value of comparison stimuli j
- Why would the brain do this?
 - Efficient use of neural resources [Carandini and Heager 2011]
 - Neurons can only fire over a finite range
 - Want the same system to work (for example) in very bright and very dark conditions
 - Absolute value encoding is inefficient
 - In dark environments, everything encoded at the bottom of the scale
 - In light environments, everything encoded at the top of the scale
 - Normalization encodes relative to the mean of the available options

• There is also evidence that the value of choice alternatives is normalized [Louie et. al. 2011]

- Why should normalization matter for choice?
- Does not change the ordering of the valuation of alternatives, so why should it change choice?
- Because choice is *stochastic*
- The above describes *mean* firing rates
- Choice will be determined by a draw from a random distribution around that mean
 - Claim that such stochasticity is an irreducible fact of neurological systems
- Probability of choice depends on the difference between the encoded value of each option
- Utility has a cardinal interpretation, not just an ordinal one

Firing rate (sp/s)

- How do these predictions vary from standard random utility model?
- Luce model:

$$p(a|A) = rac{u(a)}{\sum_{b \in A} u(b)}$$

- Implies that the relative likelihood of picking *a* over *b* is independent of the other available alternatives
- Stochastic IIA
- More general RUM
 - Adding an alternative *c* can affect the relative likelihood of choosing *a* and *b*
 - But only because *c* itself is chosen
 - Can 'take away' probability from a or b
 - The amount *c* is chosen bounds the effect it can affect the choice of *a* or *b*

- Subjects (40) took part in two tasks involving snack foods
- Asked to *bid* on each of 30 different snack foods to elicit valuation
 - BDM procedure used to make things incentive compatible
- 2 Asked to make a choice from three alternatives
 - Target, alternative and distractor
 - 'True' value of each alternative assumed to be derived from the bidding stage

Experimental Evidence

Experimental Evidence

Experimental Evidence

- In the model we just saw, adding a third 'distractor' changed the 'distance' between the value of two targets
 - Context changed apparent magnitude of the difference
- This could not be seen in 'standard' choice data
 - Is observable in stochastic choice

• Another data set in which such effects could be observed is choice over goods defined over multiple attributes

•
$$c = \{c_1, ..., c_K\}$$

• Utility is assumed additive,

$$U(c|A) = \sum_{k=1}^{K} w_k^A u_k(c_k)$$

- $u_k(.)$ the true (context independent) utility on dimension k
- w_k^A is a context dependent weight on dimension k
- Utility also assumed to be observable
 - Koszegi and Szeidl [2013] suggest how this can be done
- Context can change the distance between values on one dimension
 - Change the trade off relative to other dimensions

- Many recent papers make use of this framework
 - Bordalo, Gennaioli and Shleifer [2012, 2013]: Salience
 - Soltani, De Martino and Camerer [2012]: Range Normalization
 - Cunningham [2013]: Comparisons
 - Koszegi and Szeidl [2013]: Focussing
 - Bushong, Rabin and Schwartzstein [2015]: Relative thinking

- Many recent papers make use of this framework
 - Bordalo, Gennaioli and Shleifer [2012, 2013]: Salience
 - Soltani, De Martino and Camerer [2012]: Range Normalization
 - Cunningham [2013]: Comparisons
 - Koszegi and Szeidl [2013]: Focussing
 - Bushong, Rabin and Schwartzstein [2015]: Relative thinking
- We will consider these two

- In the Louie et al. [2013] paper, normalization was relative to the *mean* of the value of the available options
- There is also a long psychology literature which suggests that *range* can play an important role in normalization
- A given absolute difference will seem *smaller* if the total range under consideration seems *larger*
- Bushong et al. [2015] suggest conditions on the weights w_k^A to capture this effect .

$$U(c|A) = \sum_{k=1}^{K} w_k^A u_k(c_k)$$

Relative Thinking: Assumptions

1
$$w_k^A = w(\Delta_k(A))$$
 where

$$\Delta_k(A) = \max_{a \in A} u_k(a_k) - \min_{a \in A} u_k(a_k)$$

- The weight given to dimension k depends on the range of values in this dimension
- 2 $w_k^A(\Delta)$ is diffable and decreasing in Δ
 - A given absolute difference receives less weight as the range increases
- **3** $w_k^A(\Delta)\Delta$ is strictly increasing, with w(0)0 = 0
 - The change in weight cannot fully offset a change in absolute difference
- $4 \ \lim_{\Delta \to \infty} w(\Delta) > 0$
 - Absolute differences still matter even as the range goes to infinity

• An example of such a function

$$w_k^{\mathcal{A}}(\Delta) = (1-
ho) +
ho rac{1}{\Delta^{lpha}}$$

- Bushong et al. [2015] do not fully characterize the behavioral implications of their model
 - Potentially interesting avenue for future research
- However, some of the implications are made clear in the following examples

Example 1

$$c = \left\{ egin{array}{c} 2 \ 3 \ 0 \end{array}
ight\}$$
, $c' = \left\{ egin{array}{c} 0 \ 0 \ 5 \end{array}
ight\}$

- Assume these payoffs are in utility units
- What will the DM choose?
- They would choose *c*, despite the fact that the 'unweighted' utility of the two options is the same

$$2w(2) + 3w(3) > 5w(3) > 5w(5)$$

• DM favors benefits spread over a large number of dimensions

Example 2

$$m{c}=\left\{egin{array}{c}2\\1\end{array}
ight\}$$
, $m{c}'=\left\{egin{array}{c}1\\2\end{array}
ight\}$

- Assume utility is linear
- Say that, in the choice set {*c*, *c*'} the DM is indifferent between the two.
- What would they choose from

$$c = \left\{ egin{array}{c} 2 \ 1 \end{array}
ight\}$$
 , $c' = \left\{ egin{array}{c} 1 \ 2 \end{array}
ight\}$, $c'' = \left\{ egin{array}{c} 2 \ 0 \end{array}
ight\}$

- They would choose *c*
- The introduction of c" increases the range of dimension 2, but not dimension 1
- Reduces the weight on the dimension in which c' has the advantage
- This is an example of the asymmetric dominance effect

Example 2

- Basic Idea: Attention is not spread evenly across the environment
- Some things draw our attention whether we like it or not
 - Bright lights
 - Loud noises
 - Funky dancing
- The things that draw our attention are likely to have more weight in our final decision
- Notice here that attention allocation is *exogenous* not *endogenous*
 - Potentially could be thought of as a reduced form for some endogenous information gathering strategy

• Bordalo, Gennaioli and Shleifer [2013] formulate salience in the following way

$$U(c|A) = \sum_{k=1}^{K} w_{k,c}^{A} u_{k}(c_{k})$$
$$= \sum_{k=1}^{K} w_{k,c}^{A} \theta_{k} c_{k}$$

- θ_k is the 'true' utility of dimension k
- $w_{k,c}^A$ is the 'salience' weight of dimension k for alternative c
- Notice that the weight that dimension k receives may be different for different alternatives

- How are the weights determined?
- First define a 'Salience Function'

$$\sigma(\mathbf{c}_k, \bar{\mathbf{c}}_k)$$

- \bar{c}_k is the reference value for dimension k (usually, but not always, the mean value of dimension k across all alternatives)
- $\sigma(c_k, \bar{c}_k)$ is the salience of alternative c on dimension k
- Properties of the Salience function
 - 1 Ordering: $[\min(c_k, \bar{c}_k), \max(c_k, \bar{c}_k)] \supset$ $[\min(c'_k, \bar{c}'_k), \max(c'_k, \bar{c}'_k)] \Rightarrow \sigma(c'_k, \bar{c}'_k) \leq \sigma(c_k, \bar{c}_k)$ 2 Diminishing Sensitivity: $\sigma(c_k + \varepsilon, \bar{c}_k + \varepsilon) < \sigma(c_k, \bar{c}_k)$ 3 Reflection: $\sigma(c'_k, \bar{c}'_k) > \sigma(c_k, \bar{c}_k) \Rightarrow \sigma(-c'_k, -\bar{c}'_k) > \sigma(-c_k, -\bar{c}_k)$

Determining Salience

• An example of a salience function

$$\sigma(c_k, ar{c}_k) = rac{|c_k - ar{c}_k|}{|c_k| + |ar{c}_k|}$$

Note:

- Shares some features with both the previous approaches we have seen
- Normalization by the mean
- Diminishing sensitivity (but relative to zero, rather than the range)
- The precise differences in the behavioral implications between these different models is somewhat murky

From Salience to Decision Weights

- Use $\sigma(c_k,\bar{c}_k)$ to rank the salience of different dimensions for good c
 - $r_{k,c}$ is the salience rank of dimension k (1 is most salient)
- Assign weight w^A_{k,c} as

$$\frac{\delta^{r_{k,c}}}{\sum_{j}\theta_{j}\delta^{r_{j,c}}}$$

• Then plug into

$$\sum_{k=1}^{K} w_{k,c}^{\mathcal{A}} \theta_k c_k$$

- More salient alternatives get a higher decision weight
- δ indexes degree to which subject is affected by salience
 - lower δ , more affected by salience

- Bordalo et al [2012] apply the salience model to choice under risk
- Choice objects are lotteries
- Dimensions are states of the world
 - c_k is the utility provided by lottery c in state of the world k
 - θ_k is the objective probability of state of the world k
- Someone who does not have salience effects maximizes expected utility
- Salience leads to probability weighting
- Note: in binary choices, assume that each alternative has the same salience for each state
- e.g.

$$\sigma(c_k, c_k') = \frac{|c_k - c_k'|}{|c_k| + |c_k'| + \lambda}$$

- Example: Salience and the Allais Paradox
- Allais Paradox: Consider the following pairs of choices:

$$c = (0.33:2500; 0.01:0; 0.66:2400)$$

or $c' = (0.34:2400; 0.66:2400)$

$$ar{c} = (0.33:2500; 0.01:0; 0.66:0)$$

or $ar{c}' = (0.34:2400; 0.66:0)$

- Typical choice is c' over c but \bar{c} over \bar{c}'
- Inconsistent with expected utility theory
- Can be explained by salience

• Consider choice 1

$$c = (0.33:2500; 0.01:0; 0.66:2400)$$

or $c' = (0.34:2400; 0.66:2400)$

• Represent by the following state space:

State	С	c'
<i>s</i> 1	2500	2400
s 2	0	2400
s 3	2400	2400

- State s_2 is the most salient state, receives most weight
- c' chosen if

```
\delta 0.33 	imes 100 < 0.01 	imes 2400
```

• More susceptible to salience, the more likely to choose c'

• Consider choice 2

$$ar{c} = (0.33:2500; 0.01:0; 0.66:0)$$

or $ar{c}' = (0.34:2400; 0.66:0)$

• Assume independence and represent by the following state space:

State	ī	\bar{c}'
<i>s</i> 1	2500	2400
s 2	2500	0
s 3	0	2400
S 4	0	0

- Salience ranking is s₂, then s₃, then s₁
- Now the upside of c
 is most salient
- *c*['] chosen if

 $0.33 \times 0.66 \times 2500 - \delta 0.67 \times 0.34 \times 2400 + \delta^2 0.33 \times 0.34 \times 100 < 0$

• Which is never true for $\delta \ge 0$

- There is a large body of evidence which suggests that context effects are important in economic choice
- This is a violation of the standard model (via IIA)
- A new class of models have tried to explain these effects via the channel of 'normalization'
 - The context of a choice affects whether a given difference is seen as big or small
- Many open questions in this literature
 - Type of normalization
 - What is the 'context'?
 - How do we behaviorally differentiate between classes of models?