Rational Reference Dependence

Mark Dean

Behavioral Economics G6943
Fall 2016

Reference Dependence

- In the previous lecture we considered models in which the effect of reference points was 'psychological'
- Affected preferences
- Loss aversion
- Or the choice procedure given preferences
- SQB model
- Choice overload
- In neither case was the effect of reference points due to some optimal procedure
- In this lecture we will consider two models in which reference dependence is rational
- Allows for interesting comparative static predictions
- Makes welfare analysis easier

Transaction Costs and Optimal Defaults

Optimal Defaults and Active Decisions [Carrol et al 2009]

- The most obvious cause of reference dependence is transaction costs
- It costs me an amount c to move away from the status quo option
- Utility of alternative x is $u(x)$ if it is the status quo, $u(x)-c$ otherwise
- Because there is nothing 'psychological' about the impact of reference points, makes welfare analysis staightforward
- Want to maximize utility net of transaction costs

Transaction Costs and Optimal Defaults

Optimal Defaults and Active Decisions [Carrol et al 2009]

- We can think of the design problem of a social planner choosing the default in order to maximize welfare of an agent
- In the case of a single agent whose preferences are known, the problem is trivial
- Set the default equal to the highest utility alternative
- Carrol et al [2009] make the problem more interesting in three ways
- Several agents, each with potentially different rankings
- Each agent's ranking is not observable to the social planner
- Agent has quasi-hyperbolic discount function, but the social planner wants to maximize exponentially discounted utility

The Agent's Problem

- Agent lives for an infinite number of periods
- They start life with a default savings rate d
- They have an optimal savings rate s
- In any period in which they have a savings rate d they suffer a loss

$$
L=\kappa(s-d)^{2}
$$

- In any period they can change to their optimal savings rate at cost c
- Cost drawn in each period drawn from a uniform distribution
- Discounted utility given by quasi-hyperbolic function of expected future losses

The Agent's Problem

- Restrict attention to stationary equilibria
- Agent has a fixed c^{*}
- Will switch to the optimal savings rate if $c<c^{*}$
- c^{*} is
- Increasing in β
- Decreasing in $|s-d|$

The Planner's Problem

- Facing a population of agents drawn from a uniform distribution on $\left[s_{*}, s^{*}\right]$
- Cannot observe s
- Wishes to choose d in order to minimize expected, exponentially discounted loss of the population
- Has to take into account two trade offs
- A default that is good for one agent may be bad for another
- A default that is too good may lead present-biased agents to procrastinate

The Planner's Problem

$\beta=1$

$\beta=0.75$

$\beta=0.1$

- Expected total loss (from the planner's point of view) based on the distance between default and optimal savings rate
- If $\beta=1$ always better to have default closer to optimal
- if $\beta<1$ may be better to have default further away to overcome procrastination

The Planner's Problem

- Leads to three possible optimal policy regimes
- Center default - minimize the expected distance between s and d
- Offset default - Encourage the most extreme agents to make active decisions
- Active decisions - Set a default so bad that all agents to move away from the default.

The Planner's Problem

$\beta=0.75, \bar{s}-\underline{s}=0.25$

$\beta=0.1, \bar{s}-\underline{s}=0.15$

The Planner's Problem

Reference Points and Optimal Coding

- In previous lectures we showed that context effects could change how information is encoded in the brain
- Could this be a rational use of neural resources?
- Focus attention where it is most useful
- If so, may be a role for reference points affecting valuation and therefore choice
- Reference points tell us what is most likely to happen
- and so where it is most likely to be useful to make fine judgements
- This hypothesis is explored in Woodford [2012]

A Detour Regarding Blowflys

- Shows neural response to contrast differences in light sources (black dots)
- Also CDF of contrast differences in blowfly environment (line)

A Detour Regarding Blowflys

- Sharpest distinction occurs between contrasts which are likely to occur
- i.e slope of line matches the 'slope' of the dots

Rational Coding

- Blowflies seem to use neural resources to best differentiate between states that are most likely to occur
- Does this represent 'optimal' use of resources?
- Surprisingly not if costs are based on Shannon mutual information
- Why not?

The Effect of Priors

- Remember Shannon Mutual Information costs can be written as

$$
\begin{aligned}
& -[H(\Gamma)-E(H(\Gamma \mid \Omega))] \\
& \sum_{\gamma \in \Gamma(\pi)} P(\gamma) \ln P(\gamma)-\sum_{\omega} \mu(\omega)\left(\sum_{\gamma \in \Gamma(\pi)} \pi(\gamma \mid \omega) \ln \pi(\gamma \mid \omega)\right)
\end{aligned}
$$

where

$$
P(\gamma)=\sum_{\omega \in \Omega} \pi(\gamma \mid \omega) \mu(\omega)
$$

- Changing the precision of a signal in a given state (i.e. $\pi(\gamma \mid \omega))$ changes info costs by

$$
(\ln (P(\gamma))+1) \frac{\partial P(\gamma)}{\partial \pi(\gamma \mid \omega)}-\mu(\omega)(\ln (\pi(\gamma \mid s)+1)
$$

The Effect of Priors

- But $\frac{\partial P(\gamma)}{\partial \pi(\gamma \mid \omega)}=\mu(\omega)$, so

$$
\mu(\omega)(\ln (P(\gamma))-\ln (\pi(\gamma \mid s))
$$

- It is cheaper to get information about states that are less likely to occur
- Intuition: you only pay the expected cost of information
- Expected cost information about states that are unlikely to occur is low
- This offsets the lower value of gathering information about such states
- Prior probability of state should not matter for optimal coding

The Effect of Priors

- Does this hold up in practice?
- Experiment: Shaw and Shaw [1977]
- Subjects had to report which of three letters had flashed onto a screen
- Letter could appear at one of 8 locations (points on a circle)
- Two treatments
- All positions equally likely
- 0 and 180 degrees more likely
- Shannon prediction: behavior the same in both cases

Shaw and Shaw [1977]: Treatment 1

Shaw and Shaw [1977]: Treatment 2

Shannon Capacity

- This observation lead Woodford [2012] to consider an alternative cost function
- Shannon Capacity
- Let

$$
I_{\mu}(\Gamma, \Omega)
$$

be the Mutual Information between signal and state under prior beliefs μ

- Shannon Capacity is given by

$$
\max _{\mu \in \Delta(\Omega)} I_{\mu}(\Gamma, \Omega)
$$

- i.e. the maximal mutual information across all possible prior beliefs
- True priors no longer affect costs
- Signals on less likely states no cheaper than signals on more likely states

Shannon Capacity

- Optimal behavior when objective is linear in squared error
- Upper panel prior is $N(2,1)$, lower panel prior is $N(-2,1)$

Coding Values

- One can apply this model to economic choice
- Assume that DM have to encode the value of a given alternative
- As in previous lectures can assume alternative is characterized along different dimensions
- Has a limited capacity to encode value along each dimension
- Chooses optimal encoding given costs, prior beliefs and the task at hand

Reference Dependence

- This model can explain diminishing sensitivity
- But not, in an obvious way, loss aversion
- Remember, diminishing sensitivity predicts
- Risk aversion for gains
- Risk seeking for losses
- E.g.
- Choice 1: start with 1000 , choose between a gain of 500 for sure or a 50% chance of a gain of 1000
- Choice 2: start with 2000, choose between a loss of 500 for sure or a 50% chance of a loss of 1000

Reference Dependence

- Assume that the change in the reference point changes the prior distribution over final outcomes
- Choice 2 has a mean which is 1000 higher than choice 1
- Assume that prior is normal
- In Choice 11000 most likely, then 1500, then 2000
- 1000 most precisely encoded, then 1500 then 2000
- More 'sensitive' to the change between 1000 and 1500 than between 1500 and 2000
- Leads to risk aversion
- In Choice 22000 most likely, then 1500, then 1000
- 2000 most precisely encoded, then 1500 then 1000
- More 'sensitive' to the change between 2000 and 1500 than between 1500 and 1000
- Leads to risk loving

Reference Dependence

- Plot of Mean Squared Normalized Value under the two different coding schemes

Summary

- Treating reference dependence as optimal can have benefits
- Allows for welfare analysis
- Provides new comparative static pedictions
- Examples
- Optimal defaults
- Adaptive coding
- Does, of course, depend on whether reference dependence is optimal

