Mark Dean

Behavioral Economics G6943 Autumn 2019

- Up until now, we have assumed that reference points are observable
- Where do they come from?
- Implicit in most of the early literature is the idea that reference points are either
- 1 What you currently have
 - E.g. in the endowment effect
- Or what you get if you do nothing
 - E.g. in the 401k example

- There is some experimental work trying to differentiate these different effects
- e.g. Ritov and Baron [1992], Schweitzer [1994]
- Try to separate between
 - Pure status quo bias (Preference for the current state of affairs)
 - Omission bias (preference for inaction)
- Former study found only omission bias, latter found both

- More recent work became a bit more uncomfortable with this idea
- Shouldn't expectations matter?
 - Imagine that I am offered a job
 - If I take it I could either be paid \$50,000 or \$100,000
 - Wouldn't the \$50,000 feel like a loss
 - Even though \$100,00 is neither what I am currently getting, not what I would get if I did nothing?

- So maybe we want a model in which preferences are expectations
- But herein lines a problem
- What should you expect to happen?
- In the above example my expectations will be different depending on whether I take the job
- But whether or not I take the job depend on my expectations

- Koszegi and Rabin [2006, 2007] made two innovations
- 1 Allowed for reference points to be stochastic
 - If your reference point is a lottery you treat it as a lottery
- 2 Allowed for 'rational expectations'
 - Introduce the concept of 'personal equilibrium'

Personal Equilibrium

- Consider an option x
- What would I choose if x was my reference point?
- If it is x, then I will call x a personal equilibrium
- If I expect to buy x then it should be my reference point
- If it is my reference point then I should actually buy it

Example

- Consider shopping for a pair of earmuffs
 - The utility of the earmuffs is 1
 - Prices is p
 - Again, assume that utility is linear in money
- What would you do if reference point was to buy the earmuffs?
 - Utility from buying earmuffs is 0
 - Utility from not buying earmuffs is $p \lambda$
 - Buy earmuffs if $p < \lambda$
- What would you do if reference point was to not buy the earmuffs?
 - Utility from not buying the earmuffs is 0
 - Utility from buying earmuffs is $1 \lambda p$
 - Would buy the earmuffs if $p < rac{1}{\lambda}$

Example

Preferred Personal Equilibrium

- One thing this makes obvious is that the set of possible equilibria may be large
- It would be nice to have some refinement
- KR propose the concept of preferred personal equilibrium
- The personal equilibrium with the highest ex ante expected utility

- The above model can be applied to choices over lotteries
- Consider a lottery p: a probability distribution over a (finite number of) monetary amounts X
- Consider a (for now) exogenous reference lottery r
- KR propose utility functions of the form

$$U(p,r) = \sum_{x \in X} p(x)u(x) + \sum_{x \in X} \sum_{y \in X} v(u(x) - u(y))p(x)r(y)$$

- First term: consumption utility
- Second term: reference utility (for example v(z)=z if z>0 or λz if z<0)

- This model gives an endowment effect for risk
 - i.e people will be more risk loving if they are expecting a lottery
- Consider the choice between
 - A 50/50 lottery between \$10 and \$0
 - And an amount $x \in (10, 0)$
- Assume u is linear

• First, if x is the reference:

$$U(x,x) = x$$

 $U(p,x) = 5 + 0.5[(10 - x) - \lambda x]$

• Break even comes at

$$x = \frac{20}{3 + \lambda}$$

• If $\lambda > 1$ then x < 5

• Now if p is reference

$$U(x, p) = x + 0.5[x - \lambda(10 - x)]$$

$$U(p, p) = 5 + 0.25[(10(1 - \lambda))]$$

Break even comes when

$$\frac{(3+\lambda)}{2}x - 5\lambda = 7.5 - 2.5\lambda$$
$$\frac{(3+\lambda)}{2}x = 2.5(3+\lambda)$$
$$x = 5$$

- So where does the reference point come from?
- Again, one possibility is to apply the 'rational expectations' assumption
- In the Choice-Acclimating Personal Equilibrium model the reference lottery must be the chosen lottery

$$U(p) = \sum_{x \in X} p(x)u(x) + \sum_{x \in X} \sum_{y \in X} v(u(x) - u(y))p(x)p(y)$$

• Choose in order to maximize U(p)

- A natural question: what are the behavioral implications?
- Remember, we highlighted this as a problem with the deterministic version of KR in lecture 1
- Masatlioglu and Raymond provide some answers
 - CAPE is exactly the intersection of rank dependent utility and quadratic utility

$$\sum \phi(x,y)p(x)p(y)$$

Endogenous Reference Points

- One feature of the KR Personal Equilibrium model is that reference points are *endogenous*
 - i.e the choice set is a sufficient statistic to determine behavior
 - Choice set and reference points cannot be separately manipulated
- Other papers have provided alternative models of endogenous reference point formation

- Consider again the phenomenon of Asymmetric Dominance
- One way to interpret this phenomenon is that the dominated option becomes a reference point
 - Blocks some alternatives from being chosen a la Masatioglou and Ok [2005]
 - Causes the asymmetric dominance effect
- However there are some problems about generalizing this model
 - How do we, in general, determine what the reference point is for an arbitrary choice set?
 - Dimensions not generally observable and objective
- Ok et al [2015] provide a representation that solves both of these issues

- **Data:** Standard choice correspondence on X $c: D \rightarrow 2^X$ where D is the set of non-empty compact subsets of X
- Model: There exists
 - A continuous utility function $u: X \to \mathbb{R}$
 - A set U of real maps on X
 - A 'reference map' $r: D \to X \cup \Diamond$ such that
 - $r(S) \in S/c(S)$ if $r(s) \neq \Diamond$
- Define $\bar{U}(x) = \{ y \in X | U(y) \ge U(x) \ \forall \ U \in U \}$

Such that

$$\textbf{1} \ \ \mathsf{lf} \ \mathit{r}(\mathit{S}) = \lozenge \\ c(\mathit{S}) = \arg\max_{\mathit{x} \in \mathit{S}} \mathit{u}(\mathit{x})$$

2 If $r(S) \neq \emptyset$ $c(S) = \{x \in S | u(x) > u(y) \ \forall \ y \in S \cap \bar{U}(r(S)) \}$

$$\textbf{3} \ \text{For any} \ T \subset S \ \text{such that} \ r(S) \in T \ \text{and} \ c(S) \cap T \neq \varnothing \ \text{then} \\ r(T) \neq \lozenge \ \text{and}$$

$$c(T) = \{ x \in X | u(x) \ge u(y) \ \forall \ y \in T \cap \bar{U}(r(S)) \}$$

- Interpretation
- 1 If there is no reference point maximize u
- 2 If there is a reference point then maximize u amongst all alternatives that are at least as good as the reference point in all dimensions
- ${f 3}$ If T is a subset of S that contains the referent, then the reference point must be (effectively) the same
- Note that choice from $\{x, y\}$ governed by u
 - Say u(x) > u(y) but $y \in C(\{x, y\})$
 - Must be that $r(\{x,y\}) = x$ as y is chosen and by assumption $r(S) \in S/c(S)$ if $r(s) \neq \Diamond$
 - But x cannot block x
 - Implies $x \in C(\{x, y\})$ contradiction
 - so we can assume that $r(\{x,y\}) = \Diamond$

- What behavior reveals an alternative as a reference point?
 - i.e. that z favors x?
- 2 $y \in c(x, y)$ but $\{x, y\} \cap c(x, y, z) = \{x\}$
- If either of these things occur we say that z is a revealed reference for x

- The above notion is about z helping x.
- Also need to define the idea that z does not harm x
- We say that z is a potential reference for x if, for every set $\{x, y, z\}$ such that $c(x, y, z) \neq \{z\}$

$$x \in c\{x, y\} \Rightarrow x \in c(x, y, z)$$

 $y \notin c(x, y) \Rightarrow y \notin c(x, y, z)$

No Cycles

if
$$x \in c(x, y)$$
 and $y \in c(y, z)$ then $x \in c(x, z)$

Rationality of Indifference

if
$$\{x, y\} \subset c(S)$$
 then $\{x, y\} = c\{x, y\}$

• **Reference Acyclicity**: if there is $x_1, ..., x_N$ such that x_n is a revealed reference for x_{n+1} then x_1 must be a potential reference for x_N

- **Definition: T** is a c-cover of *S* if it is
 - A cover of S
 - For every $T \in \mathbf{T}$, $c(T) \cap S \neq \emptyset$
- Reference Consistency: Let **T** be a c-cover of *S* with |T|=2 for some $T\in \mathbf{T}$. Then for some $T'\in \mathbf{T}$

$$c(T') = c(S) \cap T'$$

- Why |T| = 2 for some $T \in \mathbf{T}$?
- Deals with the case in which $r(S) = \Diamond$
- $r(T) = \Diamond$ as well, so WARP must hold

Endogenous Reference Points

- Think back to our original stylized facts about reference dependence
 - Endowment effect?
 - Diminishing Sensitivity?
 - Increased risk aversion for gains and losses?
- Can models of endogenous reference points explain this behavior?
- Arguably not easily
 - These are examples in which the choice set is kept the same, but the reference point changes

Endogenous Reference Points and the Endowment Effect

- Endowment effect?
- Choice is always between the mug and some money
- Change only what you are endowed with
- This is consistent with PE if trading and not trading are both PE
 - Those with the mug select equilibrium where they expect to keep mug
 - Those without mug select equilibrium where they expect to keep money
- But also consistent with opposite

Endogenous Reference Points and the Endowment Effect

- Diminishing Sensitivity
- Choice is always over the same lotteries defined in terms of final outcomes
- Change what counts as 'zero'
- Again could be consistent with PE model
 - But only if people select the right equilibrium
 - · Seems a bit unsatisfactory

Expectations as Reference Points

- So the PE model (or any model of purely endogenous reference points) unlikely to be the whole story
 - And indeed KR acknowledge this in their article
- One can still ask whether expectations play an important role as reference points
- This is part of an active (and hotly debated) experimental literature

- Endowments as Expectations (Ericson and Fuster [2011])
 - Experiment in which subjects were endowed with a mug
 - Would be allowed to trade for a pen with some probability
 - Higher probability of being forced to keep the mug ⇒ lower probability of trade if allowed
- Heffetz and List [2013] find exactly the opposite!
 - Reference effects driven by assignment
 - Not obvious what drives the differences
- For a nice review see
 - Marzilli Ericson, Keith M., and Andreas Fuster. "The Endowment Effect." Annu. Rev. Econ. 6.1 (2014): 555-579.

- Cerulli-Harms et al [2019] suggest that these experiments were designed the wrong way round
 - Expectations based EE requires seller to be expecting to keep and buyer expecting not to buy
 - Reducing the probability of being allowed to trade should not affect these expectations
- Solution?
- With some probability subjects are forced to trade
- As the probability of forced trade increases
 - WTP should increase
 - WTA should decrease
- Should be the same at p=0.5

- Results?
- Its complicated....
- Experiment 1:
 - Endowment first, then forced exchange mechanism explained
 - Market prices
 - Endowment effect at p=0
 - No impact of probabilities
- Experiment 2:
 - Forced exchange mechanism explained, then endowment
 - Market prices
 - Endowment effect at p=0
 - Probabilities respond in predicted direction
- Experiment 3:
 - · Forced exchange mechanism explained, then endowment
 - BDM prices
 - Endowment effect at p=0
 - No effect of probabilities

- Follow up paper: Goette et al [2019]
 - Maybe heterogeneity is important
- Chapman et al [2018] between 22% and 50% of the population may be gain loving
- Loss averse and loss loving subjects should respond in the opposite direction to changes in probabilities
- Tests on aggregate data maybe very noisy and underpowered

- Run a two stage experiment
- Stage 1: Estimate loss attitude using ratings
 - 36% loss averse
 - 40% loss neutral
 - 24% gain loving
- Stage 2: Estimate endowment effect at p=0 and p=0.5
 - Loss averse subjects: 33% trade at p=0, 49% at p=0.5
 - Gain loving subjects: 43% trade at p=0, 18% at p=0.5