Time Preferences

Mark Dean

Behavioral Economics G6943 Fall 2018

Two Standard Ways

- In the introductory lecture we suggested two possible ways of spotting temptation
(1) Preference for Commitment
(2) Time inconsistency
- Previously we covered Preference for Commitment
- Now, time preferences!

Time Inconsistency

- Imagine you are asked to make a choice for today
(1) Salad or burger for lunch
(2) 10 minute massage today or 11 minute massage tomorrow
- And a choice for next Friday
(1) Salad or burger for lunch
(2) 10 minute massage on the 16 th or 11 minute massage 17 th
- Choice \{burger,salad\} or $\{10,11\}$ is a 'preference reversal'
- Interpretation: you are tempted by the burger, but would 'prefer' to choose the salad
- In terms of previous model
- burger maximizes $u+v$
- salad maximizes u

Time Inconsistency

- This is inconsistent with standard intertemporal choice theory
- Utility given by

$$
\sum_{t=1}^{T} \delta^{t} u\left(c_{t}\right)
$$

- δ is the discount rate
- c_{t} is consumption in period t
- u is stable utility function
- If $u(s)>u(b)$ then salad should be chosen over burger both today and next Wednesday
- If $u(s)<u(b)$ then burger should be chosen over salad both today and next Wednesday
- If $u(10)>\delta u(11)$ then 10 minute earlier massage should be chosen over 11 minute later massage both today and next week
- If $u(10)<\delta u(11)$ then 11 minute later massage should be chosen over 10 minute earlier massage both today and next week

Time Inconsistency

- Are preference reversals evidence for temptation?
- Not necessarily - could be changing tastes
- Maybe just had a salad, so fancied a burger today but salad next week
- Maybe know they are going to be busy tomorrow, so would prefer the 10 minute massage today but 11 minute massage in a week and one day
- Such changes should be distributed randomly
- But in many cases choices vary consistently
- Thirsty subjects
- Juice now (60%) or twice amount in 5 minutes (40%)
- Juice in 20 minutes (30\%) or twice amount in 25 minutes (70\%)
- Hard to explain with changing tastes

Time Inconsistency

- In order to model time preferences we need to decide what data set we are working with
- Initially consider preference over consumption streams
- Allow clean theoretical statements
- However, often we do not often observe preference over consumption streams
- Instead we observe repeated consumption/savings choices
- Will next consider this data set
- Relate to preference for commitment

Preference Over Consumption Streams

- Object of choice are now consumption streams:

$$
C=\left\{c_{1}, c_{2}, \ldots . .\right\}
$$

- c_{i} is consumption at date i
- Standard model: Exponential Discounting

$$
U(C)=\sum_{i=1}^{\infty} \delta^{i} u\left(c_{i}\right)
$$

Exponential Discounting

- Characterized by two conditions
- Trade off consistency

$$
\begin{aligned}
\left\{x, y, c_{3}, c_{4}, \ldots .\right\} & \succ\left\{z, w, c_{3}, c_{4}, \ldots .\right\} \\
& \Rightarrow \\
\left\{x, y, d_{3}, d_{4}, \ldots .\right\} & \succ\left\{z, w, d_{3}, d_{4}, \ldots .\right\}
\end{aligned}
$$

- Stationarity

$$
\begin{aligned}
\left\{c_{1}, c_{2}, \ldots .\right\} & \succ\left\{d_{1}, d_{2}, \ldots\right\} \\
& \Rightarrow \\
\left\{e, c_{1}, c_{2}, \ldots\right\} & \succ\left\{e, d_{1}, d_{2}, . .\right\}
\end{aligned}
$$

Necessity

- Trade off consistency: necessary for separable utility function

$$
\begin{aligned}
\left\{x, y, c_{3}, c_{4}, \ldots .\right\} & \succ\left\{z, w, c_{3}, c_{4}, \ldots .\right\} \\
& \Rightarrow \\
\left\{x, y, d_{3}, d_{4}, \ldots .\right\} & \succ\left\{z, w, d_{3}, d_{4}, \ldots\right\}
\end{aligned}
$$

- Assuming exponential discounting

$$
\begin{aligned}
u(x)+\delta u(y)+\sum_{i=2}^{\infty} \delta^{i} u\left(c_{i}\right) & \geq u(w)+\delta u(z)+\sum_{i=2}^{\infty} \delta^{i} u\left(c_{i}\right) \Rightarrow \\
u(x)+\delta u(y) & \geq u(w)+\delta u(z) \Rightarrow \\
u(x)+\delta u(y)+\sum_{i=2}^{\infty} \delta^{i} u\left(d_{i}\right) & \geq u(w)+\delta u(z)+\sum_{i=2}^{\infty} \delta^{i} u\left(d_{i}\right)
\end{aligned}
$$

Necessity

- Stationarity: necessary of exponential discounting

$$
\begin{aligned}
\left\{c_{1}, c_{2}, \ldots .\right\} & \succ\left\{d_{1}, d_{2}, \ldots\right\} \\
& \Rightarrow \\
\left\{e, c_{1}, c_{2}, \ldots\right\} & \succ\left\{e, d_{1}, d_{2}, . .\right\}
\end{aligned}
$$

- Assuming exponential discounting

$$
\begin{aligned}
\sum_{i=0}^{\infty} \delta^{i} u\left(c_{i}\right) & \geq \sum_{i=0}^{\infty} \delta^{i} u\left(d_{i}\right) \Rightarrow \\
u(e)+\delta\left(\sum_{i=0}^{\infty} \delta^{i} u\left(c_{i}\right)\right) & \geq u(e)+\delta\left(\sum_{i=0}^{\infty} \delta^{i} u\left(d_{i}\right)\right)
\end{aligned}
$$

Sufficiency

- Trade Off Consistency and Stationarity clearly necessary for an exponential discounting representation
- Turns out that they are also sufficient (along with some technical axioms)
- Stationarity propagates Trade Off Consistency to future periods
- See Koopmans [1960] (or for an easier read Bleichrodt, Rohde and Wakker [2008])
- Which of these axioms is violated by time consistency?

Time Inconsistency

- Time inconsistency violates Stationarity

$$
\begin{aligned}
\{10,0,0, \ldots\} \succ & \{0,11,0, \ldots\} \\
& \text { but } \\
\{0,10,0,0, \ldots\} \prec & \{0,0,11,0, \ldots\}
\end{aligned}
$$

- In general this is dealt with by replacing exponential discounting with some other form
- Hyperbolic

$$
U(C)=\sum_{i=1}^{\infty} \frac{1}{1+k i} u\left(c_{i}\right)
$$

- quasi hyperbolic

$$
U(C)=u\left(c_{1}\right)+\sum_{i=2}^{\infty} \beta \delta^{i} u\left(c_{i}\right)
$$

- Hyperbolic discounting is a pain to use, so people generally work with quasi hyperbolic discounting [Laibson 1997]

Quasi Hyperbolic Discounting

- Implication of quasi hyperbolic discounting: Only the first period is special
- Otherwise the DM looks standard
- Weaken stationarity to 'quasi-stationarity' [Olea and Strzalecki 2014]

$$
\begin{aligned}
\left\{f, c_{1}, c_{2}, \ldots\right\} & \succ\left\{f, d_{1}, d_{2}, \ldots\right\} \\
& \Rightarrow \\
\left\{f, e, c_{1}, c_{2}, \ldots\right\} & \succ\left\{f, e, d_{1}, d_{2}, . .\right\}
\end{aligned}
$$

- Stationarity holds after first period

Quasi Hyperbolic Discounting

Clearly necessary for quasi-hyperbolic discounting

$$
\begin{aligned}
&\left\{f, c_{1}, c_{2}, \ldots\right\} \succ\left\{f, d_{1}, d_{2}, \ldots\right\} \\
& \Rightarrow \\
&\left\{f, e, c_{1}, c_{2}, \ldots\right\} \succ\left\{f, e, d_{1}, d_{2}, . .\right\} \\
& u(f)+\beta \sum_{i=1}^{\infty} \delta^{i} u\left(c_{i}\right) \geq u(f)+\beta \sum_{i=1}^{\infty} \delta^{i} u\left(d_{i}\right) \Rightarrow \\
& u(f)+\beta \delta\left(u(e)+\sum_{i=1}^{\infty} \delta^{i} u\left(c_{i}\right)\right) \\
& \geq u(f)+\beta \delta\left(u(e)+\sum_{i=1}^{\infty} \delta^{i} u\left(d_{i}\right)\right)
\end{aligned}
$$

Quasi Hyperbolic Discounting

- Olea and Strzalecki show that quasistationarity plus a slight modification to trade off consistency (plus technical axioms) is equivalent to

$$
u\left(c_{0}\right)+\beta \sum_{i=1}^{\infty} \delta^{i} v\left(c_{i}\right)
$$

- Note that u may be different from v

Quasi Hyperbolic Discounting

- To get to Quasihyperbolic discounting, need to add something else.
- If

$$
\begin{aligned}
\left\{b, e_{2}, e_{2}, \ldots\right\} & \succeq\left\{a, e_{1}, e_{1}, \ldots\right\} \\
\left\{c, e_{1}, e_{1}, \ldots\right\} & \succeq\left\{d, e_{2}, e_{2}, \ldots\right\} \\
\left\{e_{3}, a, a, \ldots\right\} & \sim\left\{e_{4}, b, b, \ldots\right\}
\end{aligned}
$$

then

$$
\left\{e_{3}, c, c, \ldots\right\} \succeq\left\{e_{4}, d, d, \ldots\right\}
$$

- First two conditions say that, accodding to u, c is 'more better' than d than a is to b
- Second two conditions says that this has to be preserved by v
- This ensures that u and v are the same

Quasi Hyperbolic Discounting

- Present bias: if $a \succ c$ then

$$
\begin{aligned}
\{g, a, b, e, \ldots\} & \sim\{g, c, d, f, \ldots\} \Rightarrow \\
\{a, b, e, \ldots\} & \succeq\{c, d, f, \ldots\}
\end{aligned}
$$

- Ensures $\beta \leq 1$

Consumption and Savings

- In general, we do not observe choice over consumption streams
- Instead, observe choices over consumption levels today, which determine savings levels tomorrow
- Consumption streams 'fix' level of future consumption
- Implicitly introduce commitment
- In consumption/savings problems, no commitment
- Consumption level at time t decided at time t
- What does quasi-hyperbolic discounting look like in this case?

Consumption and Savings - Example

- Three period cake eating problem, with initial endowment $3 y$
- Formulate two versions of the problem
- a single agent chooses c_{0}, c_{1} and c_{2} in order to maximize

$$
U(C)=u\left(c_{0}\right)+\beta \sum_{i=1}^{2} \delta^{i} u\left(c_{i}\right) \text { st } \sum_{i=0}^{2} c_{i} \leq 3 y
$$

- a game between 3 agents $k=0,1,2$ where agent k chooses c_{k} to max

$$
U(C)=u\left(c_{k}\right)+\beta \sum_{i=k+1}^{2} \delta^{i} u\left(c_{i}\right) \text { st } c_{k} \leq s_{k-1}
$$

- where s_{k-1} is remaining cake, and taking other agents strategies as given

Consumption and Savings with Exponential Discounting

- Under exponential discounting (i.e. $\beta=1$), these two approaches give same outcome
- Assuming CRRA utility

$$
\begin{aligned}
c_{0} & =\frac{3 y}{1+(\delta)^{\frac{1}{\sigma}}+\left(\delta^{2}\right)^{\frac{1}{\sigma}}} \\
c_{1} & =(\delta)^{\frac{1}{\sigma}} c_{0} \\
c_{2} & =(\delta)^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Agents are time consistent: period i agent will stick to the plan of period $i-1$ agent
- Only exponential discounting function has this feature [Strotz 1955]

Consumption and Savings with Quasi Hyperbolic Discounting

- Now assume that the agent has a quasi-hyperbolic utility function: agent k chooses c_{k} to max

$$
U(C)=u\left(c_{k}\right)+\sum_{i=k+1}^{2} \beta \delta^{i} u\left(c_{i}\right) \text { st } c_{k} \leq s_{k-1}
$$

- Now the solutions are different:
- Consider three cases
(1) Commitment: time 0 agent gets to choose c_{0}, c_{1}, c_{2}
(2) Sophistication: each player solves the game by backward induction and chooses optimally, correctly anticipating future behavior
(3) Naive: each player acts as if future plans will be followed

Consumption and Savings with Quasi Hyperbolic Discounting

- Case 1: Commitment

$$
\begin{aligned}
& c_{0}=\left(1+(\beta \delta)^{\frac{1}{\sigma}}+\left(\beta \delta^{2}\right)^{\frac{1}{\sigma}}\right)^{-1} 3 y \\
& c_{2}=\delta^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Case 2: Sophistication

$$
\begin{aligned}
& \bar{c}_{0}=\left[1+\left(\frac{\beta \delta}{\left(1+(\beta \delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}}+\frac{\delta(\beta \delta)^{\frac{1}{\sigma}}}{\left(1+(\beta \delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}}\right)^{\frac{1}{\sigma}}\right]^{-1} 3 y \\
& \bar{c}_{2}=(\beta \delta)^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Without commitment, period 2 consumption lower relative to period 1 consumption

Consumption and Savings with Quasi Hyperbolic Discounting

- Case 1: Commitment

$$
\begin{aligned}
& c_{0}=\left(1+(\beta \delta)^{\frac{1}{\sigma}}+\left(\beta \delta^{2}\right)^{\frac{1}{\sigma}}\right)^{-1} 3 y \\
& c_{2}=\delta^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Case 2: Sophistication

$$
\begin{aligned}
& \bar{c}_{0}=\left[1+\left(\frac{\beta \delta}{\left(1+(\beta \delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}}+\frac{\delta(\beta \delta)^{\frac{1}{\sigma}}}{\left(1+(\beta \delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}}\right)^{\frac{1}{\sigma}}\right]^{-1} 3 y \\
& \bar{c}_{2}=(\beta \delta)^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Period 0 consumption can be lower or higher depending on σ
- Two offsetting effects:
- Less efficient use of savings
- Agent in period 2 gets screwed

Discounting and Preference for Commitment

- Note that an exponential discounter will not have a preference for commitment
- Agent at time 1 will follow plan made at time 0
- A sophisticated non-exponential discounter will have a preference for commitment
- Agent at time 1 will not follow preferred plan of agent at time 0
- Thus, under sophistication

Non-exponential discounting
\Leftrightarrow Preference reversals
\Leftrightarrow Demand for commitment

Consumption and Savings with Quasi Hyperbolic Discounting

- Case 3: Naivete

$$
\begin{aligned}
& c_{0}=\left(1+(\beta \delta)^{\frac{1}{\sigma}}+\left(\beta \delta^{2}\right)^{\frac{1}{\sigma}}\right)^{-1} 3 y \\
& c_{2}=(\beta \delta)^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Period 0 consumption will be the same as commitment case (unsurprisingly)
- Period 1 consumption will be unambiguously higher
- Period 2 consumption will be unambiguously lower
- A naive q-hyperbolic discounter will not have a preference for commitment
- Will expect agent at time 1 to follow plan made at time 0

Discounting and Preference for Commitment

- This provides a link between preference reversals and demand for commitment
- A sophisticated q-hyperbolic agent would like to make use of illiquid assets, cut up credit cards, etc
- Next lecture we will examine whether there is an empirical link between the two
- A separate question: how valuable is commitment in consumption savings problems?
- Not very (Laibson [2015])

Strong Hyperbolic Euler Equation

- For sophisticated consumers with no commitment optimal behavior can be characterized by the SHEE

$$
\frac{\partial u\left(c_{t}\right)}{\partial c_{t}}=R E_{t}\left[\left(\beta \delta c_{t+1}^{\prime}+\left(1-c_{t+1}^{\prime}\right) \delta\right) \frac{\partial u\left(c_{t+1}\right)}{\partial c_{t+1}}\right]
$$

- Where c_{t+1}^{\prime} is the marginal propensity to consume in period $t+1$
- Modification of 'standard' Euler equation:
- Standard case: effective discount rate $d_{t}=\delta$
- SHEE: effective discount rate $d_{t}=\beta \delta c_{t+1}^{\prime}+\left(1-c_{c t+1}^{\prime}\right) \delta$
- If MPC is low, two models look similar
- Requires consumers not to be 'too' hyperbolic (see Harris and Laibson 2001)

Observing Time Inconsistency in a Consumption/Savings Problem

- What are the observable implications of quasi-hyperbolic discounting?
- If we observe a sequences of
- consumptions choices
- one period interest rates
- prices
- Incomes
under what circumstances are they consistent with q-hyperbolic discounting?
- Are these conditions different from those for the standard exponential discounting model?

Observing Time Inconsistency in a Consumption/Savings Problem

- Surprisingly, this question is not well answered
- Barro [1999] shows that if utility is log then the two are observationally equivalent
- What if utility is not \log ?
- In the CRRA class of utilities, there are three parameters to estimate, β, δ and σ
- Intuitively, need three moments
- Above data provides two:
- Response to changes in income
- Response to changes in interest rates
- Need to get third moment from somewhere
- Two recent revealed preference approaches
- Blow, Browning and Crawford [2014] (multiple goods)
- Saito, Echenique and Imai [2015] (multiple lives)

Application: Procrastination

- O'Donoghue and Rabin [1999]
- T time periods
- Have to decide in which period to perform a task
- $\left\{c_{1}, \ldots c_{T}\right\}$: Cost of performing the task in each period
- $\left\{v_{1}, \ldots v_{T}\right\}$: Value of performing the task in each period
- Two cases:
- Immediate costs, delayed rewards
- Immediate rewards, delayed cost

Application: Procrastination

- For simplicity, assume that $\delta=1$
- Period t utility from the task being done in period τ is:
- Immediate costs case

$$
\begin{aligned}
\beta v_{\tau}-\beta c_{\tau} \text { if } \tau & >t \\
\beta v_{\tau}-c_{\tau} \text { if } \tau & =t
\end{aligned}
$$

- Immediate rewards case

$$
\begin{aligned}
\beta v_{\tau}-\beta c_{\tau} \text { if } \tau & >t \\
v_{\tau}-\beta c_{\tau} \text { if } \tau & =t
\end{aligned}
$$

Application: Procrastination

- Example 1: Writing a referee report in the next 4 weeks
- Costs are immediate, rewards delayed
- Rewards: $v=\{0,0,0,0\}$
- Costs: $c=\{3,5,8,15\}$
- Report has to be done in week 4 if not done before
- Time consistent agent $(\beta=1)$ will do the report in week 1
- Sophisticated agent with $\beta=\frac{1}{2}$?
- Will do the report in week 2
- Would delay in week 3
- Prefers to do it in week 2 than week 4
- Prefers to wait till week 2 from week 1
- Naive agent with $\beta=\frac{1}{2}$?
- will end up doing the report in week 4
- Always thinks they will do the report next week

Application: Procrastination

- Example 2: Choosing when to see a movie
- Costs are delayed, rewards immediate
- Rewards: $v=\{3,5,8,13\}$
- Costs: $c=\{0,0,0,0\}$
- Movie has to be seen in week 4 if not done before
- Time consistent agent $(\beta=1)$ will see the movie in week 4
- Sophisticated agent with $\beta=\frac{1}{2}$?
- Will see the movie in week 1
- Would see it in week 3 if given the choice
- Prefers to see it in week 2 than week 3
- Prefers to see it in week 1 than week 2
- Naive agent with $\beta=\frac{1}{2}$?
- Will end up seeing the movie in week 3
- Prefers to see it in week 3 than week 4
- In week 2, thinks will wait till week 4 , so delays
- In week 1 thinks will wait till week 4 so delays

Application: Procrastination

- Proposition: Naive decision makers will always take action later than sophisticates
- Immediate costs: Sophisticates recognize future procrastination and act to avoid it
- Immediate rewards: Sophisticates recognize future 'greed', and act to preempt it

Summary

- Systematic preference reversals present a challenge to the standard model of time separable, exponential discounting
- A violation of stationarity
- There is a strong theoretical link between preference reversals, non-exponential discounting and preference for commitment
- Quasi-hyperbolic discounting model a popular alternative used to explain the data
- Treats today as special
- Can be used to model a wide variety of phenomena
- Demand for liquid assets
- Procrastination
- Pinning down the precise implications of the q-hyperbolic model is
- Easy in choice over consumption streams
- Harder in choice in consumption savings problems

