
Time Preferences

Mark Dean

Behavioral Economics G6943 Autumn 2019



Two Standard Ways

• In the introductory lecture we suggested two possible ways of
spotting temptation

1 Preference for Commitment
2 Time inconsistency

• Previously we covered Preference for Commitment
• Now, time preferences!



Time Inconsistency

• Imagine you are asked to make a choice for today
1 Salad or burger for lunch
2 10 minute massage today or 11 minute massage tomorrow

• And a choice for next Monday
1 Salad or burger for lunch
2 10 minute massage on the 18th or 11 minute massage 19th

• Choice {burger,salad} or {10,11} is a ‘preference reversal’
• Interpretation: you are tempted by the burger, but would
‘prefer’to choose the salad



Time Inconsistency

• This is inconsistent with standard intertemporal choice theory
• Utility given by

T

∑
t=1

δtu(ct )

• δ is the discount rate
• ct is consumption in period t
• u is stable utility function

• If u(s) > u(b) then salad should be chosen over burger both
today and next Monday

• If u(s) < u(b) then burger should be chosen over salad both
today and next Monday

• If u(10) > δu(11) then 10 minute earlier massage should be
chosen over 11 minute later massage both today and next
week

• If u(10) < δu(11) then 11 minute later massage should be
chosen over 10 minute earlier massage both today and next
week



Time Inconsistency

• Are preference reversals evidence for temptation?
• Not necessarily - could be changing tastes

• Maybe just had a salad, so fancied a burger today but salad
next week

• Maybe know they are going to be busy tomorrow, so would
prefer the 10 minute massage today but 11 minute massage in
a week and one day

• Such changes should be distributed randomly
• But in many cases choices vary consistently
• Thirsty subjects

• Juice now (60%) or twice amount in 5 minutes (40%)
• Juice in 20 minutes (30%) or twice amount in 25 minutes
(70%)

• Hard to explain with changing tastes



Time Inconsistency

• In order to model time preferences we need to decide what
data set we are working with

• Initially consider preference over consumption streams
• Allow clean theoretical statements

• However, often we do not observe preference over
consumption streams

• Instead we observe repeated consumption/savings choices
• Will next consider this data set
• Relate to preference for commitment



Preference Over Consumption Streams

• Object of choice are now consumption streams:

C = {c1, c2, .....}

• ci is consumption at date i
• Standard model: Exponential Discounting

U(C ) =
∞

∑
i=1

δiu(ci )



Exponential Discounting

• Characterized by two conditions
• Trade off consistency

{x , y , c3, c4, ....} � {z ,w , c3, c4, ....}
⇒

{x , y , d3, d4, ....} � {z ,w , d3, d4, ....}

• Stationarity

{c1, c2, ....} � {d1, d2, ...}
⇒

{e, c1, c2, ...} � {e, d1, d2, ..}



Necessity

• Trade off consistency: necessary for separable utility function

{x , y , c3, c4, ....} � {z ,w , c3, c4, ....}
⇒

{x , y , d3, d4, ....} � {z ,w , d3, d4, ....}

• Assuming exponential discounting

u(x) + δu(y) +
∞

∑
i=2

δiu(ci ) ≥ u(w) + δu(z) +
∞

∑
i=2

δiu(ci )⇒

u(x) + δu(y) ≥ u(w) + δu(z)⇒

u(x) + δu(y) +
∞

∑
i=2

δiu(di ) ≥ u(w) + δu(z) +
∞

∑
i=2

δiu(di )



Necessity

• Stationarity: necessary for exponential discounting

{c1, c2, ....} � {d1, d2, ...}
⇒

{e, c1, c2, ...} � {e, d1, d2, ..}

• Assuming exponential discounting

∞

∑
i=0

δiu(ci ) ≥
∞

∑
i=0

δiu(di )⇒

u(e) + δ

(
∞

∑
i=0

δiu(ci )

)
≥ u(e) + δ

(
∞

∑
i=0

δiu(di )

)



Suffi ciency

• Trade Off Consistency and Stationarity clearly necessary for an
exponential discounting representation

• Turns out that they are also suffi cient (along with some
technical axioms)

• Stationarity propagates Trade Off Consistency to future periods

• See Koopmans [1960] (or for an easier read Bleichrodt, Rohde
and Wakker [2008])

• Which of these axioms is violated by time inconsistency?



Time Inconsistency

• Time inconsistency violates Stationarity

{10, 0, 0, ...} � {0, 11, 0, ...}
but

{0, 10, 0, 0, ...} ≺ {0, 0, 11, 0, ...}

• In general this is dealt with by replacing exponential
discounting with some other form
• Hyperbolic

U(C ) =
∞

∑
i=1

1
1+ ki

u(ci )

• quasi hyperbolic

U(C ) = u(c1) +
∞

∑
i=2

βδiu(ci )

• Hyperbolic discounting is a pain to use, so people generally
work with quasi hyperbolic discounting [Laibson 1997]



Quasi Hyperbolic Discounting

• Implication of quasi hyperbolic discounting: Only the first
period is special

• Otherwise the DM looks standard

• Weaken stationarity to ‘quasi-stationarity’[Olea and
Strzalecki 2014]

{f , c1, c2, ....} � {f , d1, d2, ...}
⇒

{f , e, c1, c2, ...} � {f , e, d1, d2, ..}

• Stationarity holds after first period



Quasi Hyperbolic Discounting

Clearly necessary for quasi-hyperbolic discounting

{f , c1, c2, ....} � {f , d1, d2, ...}
⇒

{f , e, c1, c2, ...} � {f , e, d1, d2, ..}

u(f ) + β
∞

∑
i=1

δiu(ci ) ≥ u(f ) + β
∞

∑
i=1

δiu(di )⇒

u(f ) + βδ

(
u(e) +

∞

∑
i=1

δiu(ci )

)

≥ u(f ) + βδ

(
u(e) +

∞

∑
i=1

δiu(di )

)



Quasi Hyperbolic Discounting

• Olea and Strzalecki show that quasistationarity plus a slight
modification to trade off consistency (plus technical axioms) is
equivalent to

u(c0) + β
∞

∑
i=1

δiv(ci )

• Note that u may be different from v



Quasi Hyperbolic Discounting

• To get to Quasihyperbolic discounting, need to add something
else.

• If

{b, e2, e2,...} � {a, e1, e1,...}
{c , e1, e1,...} � {d , e2, e2,...}
{e3, a, a,...} ∼ {e4, b, b,...}

then
{e3, c, c,...} � {e4, d , d,...}

• First two conditions say that, according to u, c is ‘more
better’than d than a is to b

• Second two conditions says that this has to be preserved by v
• This ensures that u and v are the same



Quasi Hyperbolic Discounting

• Present bias: if a � c then

{g , a, b, e, ...} ∼ {g , c , d , f , ...} ⇒
{a, b, e, ...} � {c, d , f , ...}

• Ensures β ≤ 1



Consumption and Savings

• In general, we do not observe choice over consumption
streams

• Instead, observe choices over consumption levels today, which
determine savings levels tomorrow

• Consumption streams ‘fix’level of future consumption
• Implicitly introduce commitment

• In consumption/savings problems, no commitment
• Consumption level at time t decided at time t

• What does quasi-hyperbolic discounting look like in this case?



Consumption and Savings - Example

• Three period cake eating problem, with initial endowment 3y
• Formulate two versions of the problem

• a single agent chooses c0, c1 and c2 in order to maximize

U(C ) = u(c0) + β
2

∑
i=1

δiu(ci ) st
2

∑
i=0

ci ≤ 3y

• a game between 3 agents k = 0, 1, 2 where agent k chooses ck
to max

U(C ) = u(ck ) + β
2

∑
i=k+1

δiu(ci ) st ck ≤ sk−1

• where sk−1 is remaining cake, and taking other agents
strategies as given



Consumption and Savings with Exponential Discounting

• Under exponential discounting (i.e. β = 1), these two
approaches give same outcome

• Assuming CRRA utility

c0 =
3y

1+ (δ)
1
σ +

(
δ2
) 1

σ

c1 = (δ)
1
σ c0

c2 = (δ)
1
σ c1

• Agents are time consistent: period i agent will stick to the
plan of period i − 1 agent

• Only exponential discounting function has this feature [Strotz
1955]



Consumption and Savings with Quasi Hyperbolic
Discounting

• Now assume that the agent has a quasi-hyperbolic utility
function: agent k chooses ck to max

U(C ) = u(ck ) +
2

∑
i=k+1

βδiu(ci ) st ck ≤ sk−1

• Now the solutions are different:
• Consider three cases

1 Commitment: time 0 agent gets to choose c0, c1, c2
2 Sophistication: each player solves the game by backward
induction and chooses optimally, correctly anticipating future
behavior

3 Naive: each player acts as if future plans will be followed



Consumption and Savings with Quasi Hyperbolic
Discounting

• Case 1: Commitment

c0 =

(
1+ (βδ)

1
σ +

(
βδ2
) 1

σ

)−1
3y

c2 = δ
1
σ c1

• Case 2: Sophistication

c̄0 =

1+
 βδ(

1+ (βδ)
1
σ

)1−σ +
δ (βδ)

1
σ(

1+ (βδ)
1
σ

)1−σ


1
σ


−1

3y

c̄2 = (βδ)
1
σ c1

• Without commitment, period 2 consumption lower relative to
period 1 consumption



Consumption and Savings with Quasi Hyperbolic
Discounting

• Case 1: Commitment

c0 =

(
1+ (βδ)

1
σ +

(
βδ2
) 1

σ

)−1
3y

c2 = δ
1
σ c1

• Case 2: Sophistication

c̄0 =

1+
 βδ(

1+ (βδ)
1
σ

)1−σ +
δ (βδ)

1
σ(

1+ (βδ)
1
σ

)1−σ


1
σ


−1

3y

c̄2 = (βδ)
1
σ c1

• Period 0 consumption can be lower or higher depending on σ
• Two offsetting effects:

• Less effi cient use of savings
• Agent in period 2 gets screwed



Discounting and Preference for Commitment

• Note that an exponential discounter will not have a preference
for commitment

• Agent at time 1 will follow plan made at time 0

• A sophisticated non-exponential discounter will have a
preference for commitment

• Agent at time 1 will not follow preferred plan of agent at time
0

• Thus, under sophistication

Non-exponential discounting

⇔ Preference reversals

⇔ Demand for commitment



Consumption and Savings with Quasi Hyperbolic
Discounting

• Case 3: Naivete

c0 =

(
1+ (βδ)

1
σ +

(
βδ2
) 1

σ

)−1
3y

c2 = (βδ)
1
σ c1

• Period 0 consumption will be the same as commitment case
(unsurprisingly)

• Period 1 consumption will be unambiguously higher
• Period 2 consumption will be unambiguously lower
• A naive q-hyperbolic discounter will not have a preference for
commitment

• Will expect agent at time 1 to follow plan made at time 0



Discounting and Preference for Commitment

• This provides a link between preference reversals and demand
for commitment

• A sophisticated q-hyperbolic agent would like to make use of
illiquid assets, cut up credit cards, etc

• Next lecture we will examine whether there is an empirical link
between the two

• A separate question: how valuable is commitment in
consumption savings problems?

• Not very (Laibson [2015])



Strong Hyperbolic Euler Equation

• For sophisticated consumers with no commitment optimal
behavior can be characterized by the SHEE

∂u(ct )
∂ct

= REt

[(
βδc ′t+1 + (1− c ′t+1)δ

) ∂u(ct+1)
∂ct+1

]
• Where c ′t+1 is the marginal propensity to consume in period
t + 1

• Modification of ’standard’Euler equation:
• Standard case: effective discount rate dt = δ
• SHEE: effective discount rate dt = βδc ′t+1 + (1− c ′ct+1)δ
• If MPC is low, two models look similar

• Requires consumers not to be ‘too’hyperbolic (see Harris and
Laibson 2001)



Observing Time Inconsistency in a Consumption/Savings
Problem

• What are the observable implications of quasi-hyperbolic
discounting?

• If we observe a sequences of
• consumptions choices
• one period interest rates
• prices
• Incomes

under what circumstances are they consistent with
q-hyperbolic discounting?

• Are these conditions different from those for the standard
exponential discounting model?



Observing Time Inconsistency in a Consumption/Savings
Problem

• Surprisingly, this question is not well answered
• Barro [1999] shows that if utility is log then the two are
observationally equivalent

• What if utility is not log?
• In the CRRA class of utilities, there are three parameters to
estimate, β, δ and σ

• Intuitively, need three moments
• Above data provides two:

• Response to changes in income
• Response to changes in interest rates

• Need to get third moment from somewhere
• Two recent revealed preference approaches

• Blow, Browning and Crawford [2014] (multiple goods)
• Saito, Echenique and Imai [2015] (multiple lives)



Time Preferences as Risk Preferences

• One (quite fundamental) question is: why do we discount in
the first place?

• One possible answer is that things in the future might not
happen

• Would you prefer cake today or cake in a week?
• Before a week’s time

• You might die
• The baker might die
• Everyone might die!

• So might prefer cake now



Time Preferences as Risk Preferences

• Consider a model in which there is a constant probability
(1− δ) that the world will end in each period

• What is the value of an outcome c received in t periods?
• If you are an expected utility maximizer it is

δtu(c)

• Exponential discounting!



Time Preferences as Risk Preferences

• However, in the domain of risky choices there is plentiful
evidence that people violate EU



The Common Ratio Effect

• What would you choose?
• Many people choose C1 and D2



A Common Ratio Effect for Time Preferences

• Informally, we can see a link between the common ratio effect
and present bias.

• Perhaps C1 is preferred because it is the only certain option?
• Outcomes received today are the only certain option in
intertemporal choice

• In fact a model that gave a boost of 1β for β < 1 to options
that are certain would

• Explain the common ratio effect
• Give the β− δ model

• c valued as

1
β
u(c) if received in period 0

δtu(c) if received in period t > 0



A Common Ratio Effect for Time Preferences

• For various reasons such a model is not particularly popular
• But there are number of papers that have shown that models
of probability weighting can explain behavior in both
domains
• In fact the type of probability weighting that gives present bias
is exactly the same that gives common ratio effects

• See
• Halevy, Yoram. "Strotz meets Allais: Diminishing impatience
and the certainty effect." American Economic Review 98.3
(2008): 1145-62.

• Saito, Kota. "Strotz meets allais: Diminishing impatience and
the certainty effect: Comment." American Economic Review
101.5 (2011): 2271-75.

• Chakraborty, Anujit, Yoram Halevy, and Kota Saito. "The
Relation between Behavior under Risk and over Time."
Unpublished manuscript (2019).

• An obvious question: are these two behaviors linked
empirically?



Discounting as Perceptual Noise

• Recently, researchers have focussed on another possible
mechanism for discounting

• It might be harder to perceive the value of events that occur in
the future

• Intuitively, this will mean that good events in the future will
be downweighted relative to good events now

• Can give rise to ‘present bias’choices



Discounting as Perceptual Noise

• Consider the following simple example from Gabaix and
Laibson [2019]

• Imagine, that, when presented with a prospect of value ut the
DM receives a noisy signal

st = ut + εt

Where εt ∼ N(0, tσ2s )
• Assume prior beliefs are distributed N(0, σ2µ)



Discounting as Perceptual Noise

• Upon receiving signal st , beliefs will be given by

N

(
1

1+ tσs
σµ

st ,

(
1− 1

1+ tσs
σµ

)
σ2µ

)

• Integrating over signals, the average mean belief is given by

1
1+ tσs

σµ

ut

• This has the hyperbolic form so assuming that ut > 0

• Future rewards will be downweighted
• Choices will be present biased

even if there is no ‘actual’discounting!



Discounting as Perceptual Noise

• Obviously there are many special assumptions about this set
up but the logic is quite strong

• For example, Gabaix and Laibson show that as long as σ2st is a
weakly concave function of time, the ’discount rate’ 1

1+
σst
σµ

will

generate increasing patience

• Also a recent paper shows that present bias comes naturally
out of an optimal choice of attention

• "Optimal similarity judgments in intertemporal choice" by
Adriani and Sonderegger [2019]

• Key mechanism: when time periods are further in the future it
is less worthwhile distinguishing between them



Fudenberg and Levine [2006]

• Q-hyperbolic model still diffi cult to solve for many periods
• Game between two long run players
• Multiple equilibria [Laibson 1997, Harris and Laibson 2004]
• Fudenberg and Levine come up with a simpler model



Fudenberg and Levine [2006]

• Long run self plays a game against a sequence of short lived
self

• Short run self gets to choose what action to take a ∈ A
• Long run self chooses ‘self control’r ∈ R which modifies
utility function of short run self

• State y evolves according to some (stochastic) process
depending on history of y ,a and r

• Γ(y) available options in state y



Fudenberg and Levine [2006]

• Each short run player chooses an action a to maximize

u(y , r , a)

• Long run player chooses a mapping from histories h to R to
maximize

∞

∑
i=1

δt−1
∫
u(y(h), r(h), a(h))dπ(h)

where

• r(h) is the strategy of the long run player
• a(.) is strategy of each short run player
• y(.) is the state following history h
• π is the probability distribution over h given strategies



Fudenberg and Levine [2006]

• Define C (y , a) as the self control cost of choosing a in state y

C (y , a) = u(y , 0, a)− sup
r s.t. u(y ,r ,a)≥u(y ,r ,b) ∀ b∈Γ(y )

u(y , r , a)

• Then we can rewrite long run’s self problem as a decision
problem

• choose mapping from h to A in order to maximize

∞

∑
i=1

∫
u(y(h), 0, a(h))− c(y(h), a(h))dπ(h)



Fudenberg and Levine [2006]

• Further assume that self control costs are
• Linear
• Depend only on the chosen object and most tempting object in
choice set

c(y , a) = λ( max
b∈Γ(y )

u(b, 0, y)− u(a, 0, y))

• This is a Gul-Pesendorfer type model
• Reducing choice set reduces self control costs



A Consumption/Saving Example

• State y represents wealth
• a is fraction of wealth saved
• Return on wealth is R
• Instantaneous utility is log

u(y , 0, a) = log((1− a) y)
• Temptation utility in each period is log(y)
• Objective function becomes

∞

∑
i=1

δt−1 [log((1− a) yi )− λ(log(yi )− log((1− ai ) yi )]

=
∞

∑
i=1

δt−1 [(1+ λ) log((1− ai ) yi )− λ(log(yi )]

subject to

ai ∈ [0, 1]

yi+1 = Raiyi



A Consumption/Saving Example

• Solution. It turns out that optimal policy is constant savings
rate, so yi = (Ra)

i−1 y1

∞

∑
i=1

δt−1
[
(1+ λ) log((1− a) + (i − 1) logRa+ log y1)

−λ((i − 1) logRa+ log y1)

]
= (1+ λ)

log(1− a)
(1− δ)

+
log y1
(1− δ)

+
δ log(Ra)
(1− δ)2

• FOC wrt a
(1+ λ)

(1− δ)(1− a) =
δ

(1− δ)2a



A Consumption/Saving Example

a =
δ

1+ (1− δ)λ

• As self control costs increase, savings go down
• As δ increases, effect of self control increases



Risk Aversion in the Large and Small

• Rabin [2000] argued that lab risk aversion cannot be due to
curvature of utility function

• Would lead to absurd levels of risk aversion in the large

• Can be explained by probability weighting
• F and L offer another explanation

• For small wins, prize will be consumed immediately - compare
to current spending

• For large wins prize will be saved - compare to current wealth



Risk Aversion in the Large and Small

• Each period split in two
• Bank

• No consumption, but savings
• No temptation (nothing to consume)
• Choose amount x to take out of bank

• Casino
• Choose how much of x to consume
• Return remainder to the Bank



Risk Aversion in the Large and Small

• If everything is deterministic then can implement first best
outcome

• Set a∗ = δ

• Now assume that with some small probability will be asked to
choose between gambles at casino

• Assume probability is ‘small’so still set a∗ = δ in the bank

• Consider receiving prize z
• Wealth in period 2 given by

y2 = R(y1 + z1 − c1)



Risk Aversion in the Large and Small

• Utility of y2 in period 2 is given by

∞

∑
i=1

δt−1 [(1+ λ) log((1− a∗) + (i − 1) logRa∗ + log y2)]

=
log(1− a∗)
(1− δ)

+
log y2
(1− δ)

+
δ log(Ra∗)
(1− δ)2

=
1

(1− δ)

[
log(1− δ) + log y2 +

δ

1+ δ
log(Rδ)

]
• Total utility from consuming c1

(1+ λ) log c1 − λ log(x1 + z1)

+
1

(1− δ)

[
log(1− δ) + logR(y1 + z1 − c1) +

δ

1+ δ
log(Rδ)

]



Risk Aversion in the Large and Small

• Gives First Order Conditions

c∗ =
(1− δ)(1+ λ)(y1 + z1)

δ+ (1+ λ)(1− δ)

=

(
1− δ

δ+ (1+ λ)(1− δ)

)
(y1 + z1)

• Consumption is constrained by x1 + z1 = (1− δ)y1 + z1.
Define z∗ as(

1− δ

δ+ (1+ λ)(1− δ)

)
(y1 + z∗) = (1− δ)y1 + z∗

• For z1 > z∗, consume c∗, otherwise consume (1− δ)y1 + z1



Risk Aversion in the Large and Small

• Utility of prize less than z∗

log(x1 + z1)

+
1

(1− δ)

[
log(1− δ) + log(y1 − x1) +

δ

1+ δ
log(Rδ)

]
• Utility of prize greater than z∗

(1+ λ) log
(1− δ)(1+ λ)

1+ λ(1− δ)
(y1 + z1)− λ log(x1 + z1)

+
1

(1− δ)

[
log(1− δ) + logR

δ(y1 + z1)
1+ λ(1− δ)

+
δ

1+ δ
log(Rδ)

]
• For ’small’wins, constant relative risk aversion relative to
pocket cash

• For ‘large’wins (approximately) constant relative risk aversion
relative to wealth



Summary

• Systematic preference reversals present a challenge to the
standard model of time separable, exponential discounting
• A violation of stationarity

• There is a strong theoretical link between preference reversals,
non-exponential discounting and preference for commitment

• Quasi-hyperbolic discounting model a popular alternative used
to explain the data
• Treats today as special

• Can be used to model a wide variety of phenomena
• Demand for liquid assets
• Procrastination

• Pinning down the precise implications of the q-hyperbolic
model is
• Easy in choice over consumption streams
• Harder in choice in consumption savings problems
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