Temptation and Self Control: Evidence and Applications

Mark Dean

Behavioral Economics G6943 Autumn 2019

- A sketch of the theoretical conclusions
 - People who suffer from temptation and who are
 - Certain about the future
 - Sophisticated

Should exhibit preferences for commitment

- Non-exponential discounting should lead to
 - Preference reversals in intertemporal choice
 - Preference for commitment

- In this lecture we will talk about the evidence for
 - Preference for commitment
 - Preference for flexibility
 - Preference reversals in discounting experiments
 - The link between the two
 - Sophistication
- And three applications
 - Willpower and Personal Rules
 - Procrastination
 - Poverty Traps

Preference for Commitment

- Do we see much evidence for 'Preference for Commitment' in the field?
- Arguably not much
- Some evidence for 'informal' commitment devices
 - New year's resolutions
 - Joining a gym
 - ROSCAs
- Most formal commitment devices have been generated by behavioral economists
 - Stiikk
 - Beeminder
 - SMART
- And are relatively small in scale
 - e.g. Stickk has 424,000 'commitments'
- Can we generate preference for commitment in the lab?

Can We Generate A Preference for Commitment?

- Two examples:
- Lab: "Eliciting temptation and self-control through menu choices: a lab experiment" [Toussaert 2017]
 - See also "Temptation and commitment in the laboratory," [Hauser et al 2018]
- Field: "Self Control at Work" [Kaur et al 2015]
 - See also ""Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines," [Ashraf et al 2006]

Can We Generate A Preference for Commitment?

- Two examples:
- Lab: "Eliciting temptation and self-control through menu choices: a lab experiment" [Toussaert 2017]
 - See also "Temptation and commitment in the laboratory," [Hauser et al 2018]
- Field: "Self Control at Work" [Kaur et al 2015]
 - See also ""Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines," [Ashraf et al 2006]

- Aim: Estimate fraction of people who exhibit "Temptation" and "Self Control" a la Gul and Pesendorfer
 - Obviously going to be more interesting if they do manage to generate some of this type of behavior!
- How to generate temptation and self control in the lab?
- They use 'curiosity'
 - All subjects were given 10 mins to write about an incredible life event
 - RA picked one
 - Temptation was the chance to read one of the stories
- Temptation occurred while subjects asked to perform a boring task
 - Stare at a 4 digit number which updated for 60 seconds
 - At random intervals a prompt appeared telling them to report number
 - Paid \$2 per correct answer
 - Lasted up to 60 mins (!?!?)

Two options:

- (0) Get paid for each of the 5 prompts
- (1) Read story and get paid for 4 randomly selected prompts
- Three menus
 - $\{0\},\;\{1\},\;\text{and}\;\{0.1\}$
- Temptation: $\{0\} \succ \{0, 1\}$
- Self control: $\{0\} \succ \{0,1\} \succ \{1\}$

- Experimental timing:
 - Practice task
 - Rank menus (higher ranked menus have higher probability of being implemented)
 - **3** Extract WTP to replace worse options with better options
 - 4 Elicit beliefs about reading the story if given the option
 - 6 Perform task

Preference ordering	menu type	% subjects	(N)	random benchmark	<i>p</i> -value
$\{0\}\succ_1\{0,1\}\succ_1\{1\}$	SSB_{-0}	35.8%	(43)	7.7%	< 0.001
$\{1\} \succ_1 \{0,1\} \succ_1 \{0\}$	SSB_{-1}	4.2%	(5)	7.7%	0.171
$\{0,1\}\succ_1\{0\}\succ_1\{1\}$	$FLEX_{-0}$	20.8%	(25)	7.7%	< 0.001
$\{0,1\} \succ_1 \{1\} \succ_1 \{0\}$	$FLEX_{-1}$	7.5%	(9)	7.7%	1.000
$\{0,1\}\succ_1\{0\}\sim_1\{1\}$	$FLEX_{-0\vee 1}$	5.8%	(7)	7.7%	0.605
$\{0\}\sim_1\{0,1\}\succ_1\{1\}$	STD_{-0}	9.2%	(11)	7.7%	0.494
$\{0\}\succ_1\{1\}\succ_1\{0,1\}$	GUILT	6.7%	(8)	7.7%	0.863
other ordering		10.0%	(12)	46.1%	< 0.001
Total		100%	(120)	100%	

Table 1: Main preference orderings

• Results using rankings only

Preference ordering	menu type	% subjects	(N)	random benchmark	<i>p</i> -value
$\{0\} \succ_1 \{0,1\} \succ_1 \{1\}$	SSB_{-0}	23.3%	(28)	7.7%	< 0.001
$\{1\}\succ_1\{0,1\}\succ_1\{0\}$	SSB_{-1}	4.2%	(5)	7.7%	0.171
$\{0,1\}\succ_1\{0\}\succ_1\{1\}$	FLEX ₋₀	10.8%	(13)	7.7%	0.226
$\{0,1\}\succ_1\{1\}\succ_1\{0\}$	$FLEX_{-1}$	5.8%	(7)	7.7%	0.605
$\{0\}\sim_1\{0,1\}\succ_1\{1\}$	STD_{-0}	30.0%	(36)	7.7%	< 0.001
$\{0\}\succ_1\{1\}\succ_1\{0,1\}$	GUILT	8.3%	(10)	7.7%	0.732
$\{0\}\sim_1\{1\}\sim_1\{0,1\}$	IND	9.2%	(11)	7.7%	0.494
other ordering		8.3%	(10)	46.1%	< 0.001
Total		100%	(120)		

Table 3: Alternative classification accounting for WTP choices

• Results using rankings and WTP

Preference ordering \succeq_1 on M	menu type	dist. of Period 2 choices under S and NPR	Incentiv \succeq_1^{rank}	vized $\bar{\lambda}_1$ \succeq_1^{WTP}	Unincent \succeq_1^{rank}	tivized $\bar{\lambda}_1$ \succeq_1^{WTP}
$\{0\}\succ_1\{0,1\}\succ_1\{1\}$	SSB_{-0}	$\lambda_0>\lambda_1\geq 0$	0.023 (1/43)	0 (0/28)	0.023 (1/43)	0 (0/28)
$\{1\}\succ_1\{0,1\}\succ_1\{0\}$	SSB_{-1}	$\lambda_1>\lambda_0\geq 0$	1 (5/5)	1 (5/5)	1 (5/5)	1 (5/5)
$\{0,1\}\succ_1\{0\}\succ_1\{1\}$	$FLEX_{-0}$	$\lambda_0>\lambda_1>0$	0.12 (3/25)	0.385 (5/13)	0.12 (3/25)	0.308 (4/13)
$\{0,1\}\succ_1\{1\}\succ_1\{0\}$	$FLEX_{-1}$	$\lambda_1 > \lambda_0 > 0$	0.667	0.571	0.778	0.714
$\{0,1\} \succ_1 \{0\} \sim_1 \{1\}$	$FLEX_{-0\vee 1}$	$\lambda_0,\lambda_1>0$	0.714 (5/7)	(4/*)	(7/5) 0.714 (5/7)	-
$\{0\}\sim_1\{0,1\}\succ_1\{1\}$	STD_{-0}	$\lambda_1=0$	0 (0/11)	0.083 <i>(3/36)</i>	0 (0/11)	0.056 (2/36)
$\{0\}\succ_1\{1\}\succ_1\{0,1\}$	GUILT	$\lambda_0>\lambda_1\geq 0$	0.125 (1/8)	0.30 <i>(3/10)</i>	0.25 (2/8)	0.20 (2/10)
$\{0\}\sim_1\{1\}\sim_1\{0,1\}$	IND	$\lambda_0,\lambda_1\geq 0$		0.364 (4/11)		0.455 <i>(5/11)</i>

Table 4: Relationship between initial preference ordering and beliefs

Notes: Incentivized $\bar{\lambda}_1$ is the fraction of subjects who guessed that someone with the same rank ordering would read the story if offered {0,1} in Period 2. Unincentivized $\bar{\lambda}_1$ is the fraction of subjects who reported being somewhat or very likely to read the story if offered {0,1} in Period 2; for subjects reporting being "unsure", answers to the Incentivized question are used as a tie breaker. The distribution of Period 2 choices inferred from \pm_1 relies on the

Figure 2: Beliefs versus ex post choice by menu type

Can We Generate A Preference for Commitment?

- Two examples:
- Lab: "Eliciting temptation and self-control through menu choices: a lab experiment" [Toussaert 2017]
 - See also "Temptation and commitment in the laboratory," [Hauser et al 2018]
- Field "Self Control at Work" [Kaur et al 2015]
 - See also ""Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines," [Ashraf et al 2006]

- Consider a job in which you get paid piece rate
 - Paid only at the end of the week
- What is the effect of temptation (as modelled by hyperbolic discounting)?
 - Pay day effects: work harder when reward is immediate
 - May work less hard in period t+1 than would like in period t: Creates a demand for commitment
- Test this using an experiment with a data entry firm in Mysore, India

Figure 2: Production over the Pay Cycle

- 102 workers over 8 months
- Number of additional fields (over a base of about 5000)
- Size of effect inconsistent with discounting
- Gradual slope: incommensurate with quasi-hyperbolic discounting?

- Dominated Contracts: Reduce pay if target is not met
- A form of commitment, as it removes the possibility of producing less than the target at the same pay

Table 3

Contract Treatments

Panel A: Take-up of Dominated Contracts (Summary Statistics)				
Dominated contract chosen: conditional on attendance	0.36			
	(0.31)			
Dominated contract chosen: target=0 if absent	0.28			
-	(0.26)			

- In some weeks, workers offered the chance to choose a target b
- Receive half pay if fail to hit target
- t=0 the same as the standard contract

Panel B: Treatment Effects of Contracts						
	De	Dependent var: Attendance				
Sample	Control & Option Obs	Control & Option Obs	Full Sample	Full Sample		
	(1)	(2)	(3)	(4)		
Option to choose dominated contract	120 (59)**					
Evening option to choose dominated contract		156 (69)**	150 (69)**	0.01 (0.01)		
Morning option to choose dominated contract		84	73	-0.00		
Target imposed: Low target		(/	3	-0.00		
Target imposed: Medium target			213	-0.01		
Target imposed: High target			334 (150)**	-0.01 (0.02)		
Observations: worker-days	6310	6310	8423	8423		
R2	0.60	0.60	0.59	0.15		
Dependent variable mean	5311	5311	5337	0.88		

• Targets increased output

- If they were self imposed (columns 1 and 2)
- Exogenously imposed (3)

- Those with high payday impacts more likely to take up dominated contract
- Output also more affected

• Those with high payday impacts also chose the dominated contract more with experience

Other Examples

- Schilbach, Frank. "Alcohol and self-control: A field experiment in India." American economic review 109.4 (2019): 1290-1322.
 - 33%-50% of rickshaw drivers prepared to pay for sobriety incentives
 - Reduced daytime drinking but left overall drinking the same
 - Sobriety didn't effect labor supply or earnings
 - Did affect savings
- Carrera, M., Royer, H., Stehr, M., Sydnor, J., & Taubinsky, D. (2019). How are Preferences For Commitment Revealed? (No. w26161). National Bureau of Economic Research.
 - Find evidence that a significant fraction of gym users will pay for incentives to attend gym more
 - **BUT** a significant fraction will also pay for incentives to attend the gym **less**
 - Suggestive of experimenter demand effect and/or decision noise

Preference for Commitment

- So we can generate preference for commitment
- But (perhaps) surprisingly little of it
- Why?
- (At least) two possibilities
 - Preference for Flexibility (Discuss this now)
 - Lack of sophistication (Discuss after we have talked about time preference experiments)
- Not an exhaustive list
 - e.g. self signalling?

- Preference uncertainty is the enemy of preference for commitment
 - Creates preference for flexibility
- Can we find evidence for preference uncertainty?
 - Dean and McNeill [2015]

Preference Uncertainty Model

- X : set of alternatives
- S : set of states
- $\mu \in \Delta(S)$: probability distribution over states
- $u: X \times S \rightarrow \mathbb{R}$: utility function
 - u(x, s) utility of alternative x in state s
- Preference uncertainty driven by uncertainty about s
- Use this model to think about
 - Choices between menus of alternatives
 - Choices from those menus
- i.e. do people use the flexibility they desire?

Choices between Menus

- Let A be a menu of alternatives
- Choice from A will take place after the state is known
- Value of A before the state is known given by

$$U(A) = \sum_{s \in S} \mu(s) \max_{x \in A} u(x, s)$$

• U represents choice between menus

- The same model also makes predictions about choices **from** menus
- P(y, A): Probability of choosing alternative y from menu A

$$P(y, A) = \sum_{s \in S} \mu(s) \mathbf{1}[\mathbf{x} \in \arg \max_{\mathbf{y} \in \mathbf{A}} \mathbf{u}(\mathbf{y}, \mathbf{s})]$$

- Preference uncertainty implies a link between menu preference and stochastic choice
 - See Ahn and Sarver [2013]

Implications [Kreps 1979]

Weak Preference for Flexibility For any two menus $A \succeq B$, $A \cup B \succeq A$

- The union of two menus weakly preferred to each individually
- Rules out 'preference for commitment' i.e. $A \cup B \prec A$
 - Observable implication of temptation
- Note: A ∪ B ≻ A only if there is preference uncertainty (i.e. S is not a singleton)
 - If there is no uncertainty, $A \cup B \sim A$
 - Call this strict preference 'Preference for Flexibility'

Implications [Ahn and Sarver 2013]

Consequentialism $A \cup \{x\} \succ A \Rightarrow P(x, A \cup \{x\}) > 0$

- If you would pay for x to be added to the menu A, must sometimes choose x
- If it is never chosen it cannot be increasing the value of the menu

Responsive Menu Preferences $P(x, A \cup \{x\}) > 0 \Rightarrow A \cup \{x\} \succ A$

- If x is sometimes chosen when added to A ,the larger menu must be preferred
- Except in the case of indifference (which we will discuss later)

Experimental Design

- Simulated workplace environment
- Subject perform real effort tasks for payment according to payment contracts
 - Choice from menus
- Subjects choose between different payment contracts
 - Choice between menus

Tasks

• Simple addition tasks

Task 3

422 + 538 =

Entry:

Time remaining in section: 13:43.

Contracts

Contract 11	
-------------	--

 -	<u> </u>	
on	LIAC	120

-				
_	-	-	* * *	
	u		แล	- 24

Tasks completed	Payment
0-4	0.00
5-9	0.00
10-14	0.00
15-19	0.00
20-49	0.20
50+	0.20

Tasks completed	Payment
0-4	0.00
5-9	0.00
10-14	0.00
15-19	0.00
20-49	0.00
50+	0.40

Tasks completed	Payment
0-4	0.00
5-9	0.00
10-14	0.00
15-19	0.00
20-49	0.20
50+	0.40

• Low (L), High (H) and Flex (F)

• Each contact offers two or three undominated options

Tasks	0	20	50
Payment	0	20	40
L	Yes	Yes	No
Н	Yes	No	Yes
F	Yes	Yes	Yes

• Note that $F = L \cup H$

Choice of Contracts

Contract 2	25	Contract 24		
Tasks completed	Payment	Tasks completed	Payment	
0-4	0.00	0-4	0.00	
5-9	0.00	5-9	0.00	
10-14	0.00	10-14	0.00	
15-19	0.00	15-19	0.00	
20-49	0.00	20-49	0.20	
50+	0.40	50+	0.40	

© Contract 25 + \$0.50	Contract 24
Contract 25 + \$0.15	Contract 24
© Contract 25 + \$0.10	Contract 24
Contract 25 + \$0.05	Contract 24
Contract 25 + \$0.01	Contract 24
Contract 25	Contract 24
Contract 25	Contract 24 + \$0.01
Contract 25	Contract 24 + \$0.05
Contract 25	Contract 24 + \$0.10
Contract 25	Contract 24 + \$0.15
Contract 25	Contract 24 + \$0.50

• Three questions: H vs L, H vs F, L vs F

Evidence for Preference for Flexibility

Туре	Ν	Percent	Benchmark I	p-value	Benchmark II	p-value
Flexibility	43	35%	17%	0.00	6%	0.00
Standard	40	32%	17%	0.00	6%	0.00
Indifferent	23	19%	25%	0.12	13%	0.06
Commitment	7	6%	42%	0.00	16%	0.00
Intransitive	11	9%	-	-	59%	0.00

- Benchmark 1: Uniform random choice over transitive preference profiles
- Benchmark 2: Randomizing between preferences at each choice

Evidence for Preference for Flexibility

- 85% of subjects can be explained by the model
- 35% can only be explained by the model if there is preference uncertainty
- 15% not explained by the model
- Of which 9% are intransitive
- Very little (6%) evidence of preference for commitment
| Subjects who: | Do Low number in Flex | Ν | p-value | |
|-------------------|------------------------|-----|---------|--|
| Flex ⊁ High | 0.09 | 57 | n-0.00 | |
| $Flex \succ High$ | $Flex \succ High$ 0.37 | | | |
| Subjects who: | Do High number in Elex | N | p-value | |
| | | | pvulue | |
| Flex 7 LOW | 0.42 | 23 | p=0.00 | |
| $Flex \succ Low$ | 0.77 | /] | | |

- Subjects who strictly prefer F to H(L) make use of the additional available option
- Do so at a higher rate than those that do not have such a preference

Evidence for Responsive Menu Preferences

	Menu Preference:	All Subj.	Non-Indiff.
Do Low number in Flex	$Flex \succ High$	0.83	0.96
Do High number in Flex	$Flex \succ Low$	0.71	0.83

- Most subjects who do low (high) number of acts prefer F to H (L)
- This is near universal in the case of non-indifferent subjects

- Typical time preference experiment [e.g Benhabib Bisin Schotter 2007]:
 - Identify \$x that is indifferent to \$y in 1 month's time
 - Identify \$z in 1 month's time that is indifferent to \$w in 2 month's time
- Approximate the discount rates as

$$\delta(0,1) = \frac{x}{y}$$
$$\delta(1,2) = \frac{z}{w}$$

• Evidence of present bias if

$$\frac{x}{y} < \frac{z}{w}$$

- What are some of the problems with this approach?
 - Curvature of the utility function
 - Transaction costs/trust
 - Income smoothing and shocks

- What are some of the problems with this approach?
 - Curvature of the utility function
 - Transaction costs/trust
 - Income smoothing and shocks

Curvature of the Utility Function

- Assume that money is consumed in the period it is received.
- Background consumption \bar{c} in each period
- Indifference point occurs when

$$u(\bar{c} + x) + \delta(0, 1)u(\bar{c}) + \sum_{t=2}^{\infty} \delta(0, t)u(\bar{c})$$

= $u(\bar{c}) + \delta(0, 1)u(\bar{c} + y) + \sum_{t=2}^{\infty} \delta(0, t)u(\bar{c})$

Which implies

$$\delta(0,1) = \frac{u(\bar{c}+x) - u(\bar{c})}{u(\bar{c}+y) - u(\bar{c})}$$

- Which equals $\frac{x}{y}$ only if *u* is locally linear
- Note, will not affect identification of present bias, but will affect identification of discount factor

Curvature of the Utility Function

- Solution #1: "Eliciting Risk and Time Preferences " [Andersen et al 2008]
- (As the name suggests) measure risk and time preferences for each subject
 - MPL to measure indifference point between present and future consumption
 - MPL to measure indifference point between safe and risky prospects
- Use the latter to estimate curvature of the utility function
- Replace $\frac{x}{y}$ with $\frac{u(x)}{u(y)}$
- Reduces estimated annual discount rates from around 25% to around 10%
- Note: assumes same curvature in 'risk' and 'time' preferences

Curvature of the Utility Function

• Solution #2: "Estimating Time Preferences from Convex Budgets " [Andreoni and Sprenger]

Submit Decisions <--Clicking this button will submit ALL your decisions behind every tab

• Assuming subjects do not pick at the endpoints, can estimate curvature and discount rate

- What are some of the problems with this approach?
 - Curvature of the utility function
 - Transaction costs/trust
 - Income smoothing and shocks

Transaction Costs/Trust

- Imagine that you think that the experimenter is forgetful
- If they give you the money today, they will remember for sure
- If they are supposed to give you the money in the future, there is a γ probability they will forget
- Then indifference point between today and one month (assuming linear utility) if

$$\frac{x}{y} = \gamma \delta(0, 1)$$

And between one month and two months

$$\frac{z}{w} = \delta(1,2)$$

- Even an exponential discounted will look like they have present bias
- Same effect if there are transaction costs to collecting money on any day other than today

Transaction Costs/Trust

- Various authors have made different attempts to solve this problem:
- Andreoni and Sprenger [2013]
 - All payments (current and future) paid to campus mailbox
 - Always payments in all periods
 - Self addressed envelopes
 - Provided with the address of the experimenter
- Halevy [2015]
 - Repeated visits to classroom
- Dean and Sautmann [2015]
 - Repeated survey visits to household
- Generally studies that take these measures find little present bias for money

Transaction Costs/Trust

		week 1		week 2		week 3	
		Α	В	Α	В	Α	В
	avg. switch at or below (CFA)	157.0	155.6	153.5	152.4	158.4	154.6
	correlation A	weeks 1 and 2: 0.61		0.61	weeks 2 and 3: 0.67		0.67
	correlation B	week	s 1 and 2:	0.62	week	s 2 and 3:	0.64
_	A=B	64.4	40%	65.	39%	69.8	32%
6	more patient in A	18.4	17%	16.	17%	13.3	32%
~	more patient in B	17.1	13%	18.4	45%	16.8	86%
	pay neg. interest	9.66~%	8.15%	7.38%	5.52%	7.37%	6.86%
	inconsistent	14.76%	13.93%	10.16%	11.71%	11.13%	10.51%
	N	90	<u> 59</u>	9	65	96	61

- Experiment in urban Mali
- Surveyors came to the house every week
- No problem with transaction costs or trust
- No present bias!

- What are some of the problems with this approach?
 - Curvature of the utility function
 - Transaction costs/trust
 - Income smoothing and shocks

- So far, we have assumed that experimental payments take place in isolation
 - Often described as 'narrow bracketing'
- But this may be inappropriate
 - Subjects may suffer shocks to income/value of consumption
 - Get paid today
 - Have a big bill due today
 - May smooth consumption by borrowing and saving

• Recall the Strong Hyperbolic Euler Equation

$$\begin{aligned} \frac{\partial u(c_t)}{\partial c_t} &= R_t E_t \left[\left(\beta \delta c'_{t+1} + (1 - c'_{ct+1}) \delta \right) \frac{\partial u(c_{t+1})}{\partial c_{t+1}} \right] \\ &= R_t E_t d_t \frac{\partial u(c_{t+1})}{\partial c_{t+1}} \end{aligned}$$

• It can be shown that, if experimental payments are small

$$\frac{y}{x} = R_t = MRS_t = \frac{\frac{\partial u(c_t)}{\partial c_t}}{E_t \left(d_t \frac{\partial u(c_{t+1})}{\partial c_{t+1}} \right)}$$

Experimental payments measure MRS not time preferences

- This does **NOT** rely on direct arbitrage of experimental payments
 - Only that experimental subjects obey Euler Equation
 - Take their actual MRS into account when making experimental decisions

$$\frac{y}{x} = R_t = MRS_t = \frac{\frac{\partial u(c_t)}{\partial c_t}}{E_t \left(d_t \frac{\partial u(c_{t+1})}{\partial c_{t+1}} \right)}$$

- What will we see in time preference experiments?
- Depends on the interest rate regime
 - Perfect credit markets with market interest rate \bar{R}

$$\frac{y}{x} = R_t = \bar{R}$$

No access to credit

$$\frac{y}{x} = \frac{\frac{\partial u(y_t)}{\partial y_t}}{E_t \left(d_t \frac{\partial u(y_{t+1})}{\partial y_{t+1}} \right)}$$
$$\frac{\frac{\partial u(y_t)}{\partial y_t}}{\beta \delta E_t \left(\frac{\partial u(y_{t+1})}{\partial y_{t+1}} \right)}$$

- No smoothing, but measured MRS affected by shocks
- 'Present bias' individual could just be having a bad day
- Will give $\beta\delta$ 'on average'

- Partial access to credit: $R_t = R(s_t)$
 - Interest rates increase with borrowing (decrease with savings)
- Implies that measured MRS should
 - Fall with exogenous increase in income
 - Rise with an exogenous increase to $\frac{\partial u(c_{t+1})}{\partial c_{t+1}}$ (i.e. expenditure shock such as family illness)
 - Fall with an increase in savings
- Test this using the experiment in Mali

	OLS	OLS	OLS	OLS	IV	IV	CL
Labor income			-0.185	-0.189	-0.153	-0.159	-0.262 +
			(0.142)	(0.143)	(0.163)	(0.142)	(0.136)
Nonlabor income			-0.330	-0.321	-0.268	-0.265	-0.316
"endogenous"			(0.251)	(0.258)	(0.261)	(0.270)	(0.282)
Nonlabor income	-0.409	** -0.409	** -0.382	** -0.384	** -0.378	* -0.380	* -0.379 *
"exogenous"	(0.142)	(0.149)	(0.125)	(0.133)	(0.171)	(0.149)	(0.171)
Other spending			0.268	* 0.245	+ 0.192	0.177	0.215 +
			(0.128)	(0.131)	(0.141)	(0.132)	(0.119)
Adv. event expense	0.252	+ 0.233	+ 0.251	0.222	1.683	+ 1.562	* 0.390 *
	(0.145)	(0.139)	(0.182)	(0.183)	(0.761)	(0.769)	(0.199)
1/(error SD)	-	-	-	-	-	-	0.916 **
							(0.044)
Constant	4.69	** 4.782	** 4.56	** 4.67	** 4.527	** 4.622	** _
	(0.011)	(0.059)	(0.093)	(0.125)	(0.144)	(0.145)	
Ind FE	yes	yes	yes	yes	yes	yes	yes
Time FE		yes	-	yes		yes	yes
Observations	2540	2540	2390	2390	2390	2390	12608

Standard errors clustered at the individual level (in parentheses). Significance levels + p < 0.10, *p < 0.05, **p < 0.01

Table 8: Savings and MRS_t .								
	OLS	OLS	CL					
Savings (I-E)	-0.291	** -0.279	** -0.291 **					
	(0.076)	(0.079)	(0.080)					
1/(error SD)	-	-	0.916 **					
			0.044					
Constant	4.584	** 4.673	** _					
	(0.029)	(0.070)						
Ind FE	yes	yes	yes					
Time FE		yes	yes					
Observations	2390	2390	12608					

Standard errors clustered at the individual level (in parentheses).

Significance levels + p<0.10, * p<0.05, ** p<0.01

- So what can we learn from time preference experiments?
- If people are not 'narrow bracketers' then not a lot about time preferences
 - Measured MRS reports effective market interest rate
 - Income and expenditure shocks can look like present bias
 - In complete credit constraints case, average of repeated measures can be used to estimate parameters
- However, we can potentially learn about the shocks and constrains on a household finances
 - Less credit constrained \Rightarrow less volatile MRS
 - Positive correlation between spending and MRS \Rightarrow importance of expenditure shocks

Measuring Time Preferences

- Given these problems, how can we measure time preferences?
- We could use something other than money
 - Primary Rewards: e.g. "Time Discounting for Primary Rewards" [McClure et al 2007]
 - Effort: e.g "Working Over Time: Dynamic Inconsistency in Real Effort Tasks" [Augenblick et al 2015]
- Does this solve the problem?
- Depends on
 - Whether or not people suffer shocks to the cost of effort
 - Can 'smooth' effort

Working Over Time Augenblick et al. [2015]

Working Over Time Augenblick et al. [2015]

Job 1 Transcription

Please use the sliders to allocate tasks between Week 2 and Week 3.

8

Working Over Time Augenblick et al. [2015]

	Moneta	ry Discounting	Effort Discounting			
	(1) All Delay Lengths	(2) Three Week Delay Longths	(3) Job 1 Crock	(4) Job 2 Tetris	(5) Combined	
Present Bias Parameter: $\hat{\beta}$	0.974 (0.009)	0.988 (0.009)	0.900 (0.037)	0.877 (0.036)	0.888 (0.033)	
Daily Discount Factor: $\hat{\delta}$	0.998 (0.000)	0.997 (0.000)	0.999 (0.004)	1.001 (0.004)	1.000 (0.004)	
Monetary Curvature Parameter: $\hat{\alpha}$	0.975 (0.006)	0.976 (0.005)				
Cost of Effort Parameter: $\hat{\gamma}$			1.624 (0.114)	1.557 (0.099)	1.589 (0.104)	
# Observations # Clusters Job Effects	1500 75	1125 75	800 80	800 80	1600 80 Yes	
$H_0: \beta = 1$	$\chi^2(1) = 8.77$ (p < 0.01)	$\chi^2(1) = 1.96 \ (p = 0.16)$	$\chi^2(1) = 7.36$ (p < 0.01)	$\chi^2(1) = 11.43$ (p < 0.01)	$\chi^2(1) = 11.42$ (p < 0.01)	
$H_0: \beta(Col. 1) = \beta(Col. 5)$	$\chi^2(1) = 6.37 \ (p = 0.01)$	Í				
$H_0: \beta(Col. 2) = \beta(Col. 5)$		$\chi^2(1) = 8.26$ (p < 0.01)				

- Andreoni, J., Gravert, C., Kuhn, M. A., Saccardo, S., & Yang, Y. (2018). Arbitrage Or Narrow Bracketing? On Using Money to Measure Intertemporal Preferences (No. w25232). National Bureau of Economic Research.
 - Run an experiment with electronic payments making arbitrage easy
 - Find very little evidence that people in fact do
 - Also find very little present bias for experimental receipts ('gains', similar to money in Augenblick et al)
 - But do find it for payments ('losses', similar to working in Augenblick et al)

Link Between Preference Reversals and Preference for Commitment

- Augenblick et al. [2015] find preference reversals in the real effort task
- Does this lead to a preference for commitment?
- Recall:

Non-exponential discounting

- \Leftrightarrow Preference reversals
- \Leftrightarrow Demand for commitment
- Subjects offered a commitment device
 - Choice for effort at t + 1 vs t + 2 made at time t and t + 1
 - Commitment: Higher probability that time *t* choice would be operationalized

Link Between Preference Reversals and Preference for Commitment

.

	Monotory	scounting		
	Commit (=0)	Commit (=1)	Commit (=0)	Commit (=1)
	(1) Tobit	(2) Tobit	(3) Tobit	(4) Tobit
Present Bias Parameter: $\hat{\beta}$	0.999 (0.010)	0.981 (0.013)	0.965 (0.022)	0.835 (0.055)
Daily Discount Factor: $\hat{\delta}$	0.997 (0.000)	0.997 (0.001)	0.988 (0.005)	1.009 (0.005)
Monetary Curvature Parameter: $\hat{\alpha}$	0.981 (0.009)	0.973 (0.007)		
Cost of Effort Parameter: $\hat{\gamma}$			1.553 (0.165)	1.616 (0.134)
# Observations # Clustors	420	705 47	660 33	940 47
Job Effects	-	-	Yes	Yes
$H_0: \beta = 1$	$\chi_2(1) = 0.01 \ (p = 0.94)$	$\begin{array}{c} \chi_2(1) = 2.15 \\ (p = 0.14) \end{array}$	$\chi_2(1) = 2.64$ (p = 0.10)	$\begin{array}{c} \chi_2(1) = 9.00 \\ (p < 0.01) \end{array}$
$H_0:\beta(Col.\ 1)=\beta(Col.\ 2)$	$\chi_2(1) = 1.29$ (p = 0.26)			
$H_0:\beta(Col.\;3)=\beta(Col.\;4)$			$\begin{array}{c} \chi_2(1) = 4.85 \\ (p = 0.03) \end{array}$	

Table 4: Monetary and Real Effort Discounting by Commitment

- Subjects who commit have higher measured present bias
- However, as usual, hard to get people to pay for commitment
- Also note that many people chose commitment in money treatment, when no present bias

- Is the fact that present bias agents won't pay for commitment a sign of a lack of sophistication?
- Not really
 - Technically: violation of sophistication is paying to add an option which you then do not use
 - Intuitively: Maybe present bias is not due to other factors e.g. non-exponential discounting
- Do we have other evidence for lack of sophistication?

- "Paying Not to Go to the Gym" [DellaVigna and Malmendier, 2006]
- Test whether people have sophisticated beliefs about their future behavior
- Examine the contract choices of 7978 healthcare members
- Also examine their behavior (i.e. how often they go to the gym)
- Do people overestimate how much they will go the gym, and so choose the wrong contract?

- Three contracts
 - Monthly Contract automatically renews from month to month
 - Annual Contract does not automatically renew
 - Pay per usage

- Consumers appear to be overconfident
 - Overestimate future self control in doing costly tasks
 - Going to the gym
 - Cancelling contract
- 80% of customers who buy monthly contracts would be better off had they paid per visit (assuming same number of visits)
 - Average cost of \$17 vs \$10
- Customers predict 9.5 visits per month relative to 4.5 actual visits
- Customers who choose monthly contracts are 18% more likely to stay beyond a year than those who choose annual contract, and wait 2.29 months after last visit before cancelling

- Naivete can also lead people to take up commitment contracts which are bad for them
 - "When Commitment Fails Evidence from a Regular Saver Product in the Philippines" [John 2019]
- Subjects offered the chance to take up an "Achiever's Savings Account'"
 - Had to make regular payments
 - If they failed, paid a 'default cost'
 - Interest rate equal to the standard market rate

Sophistication

- 55% default on contract
- Largely do so 'immediately': unlikely to be due to shocks
- O'Donoghue and Rabin [1999]
- T time periods
- Have to decide in which period to perform a task
- $\{c_1, ..., c_T\}$: Cost of performing the task in each period
- $\{v_1, ... v_T\}$: Value of performing the task in each period
- Two cases:
 - Immediate costs, delayed rewards
 - Immediate rewards, delayed cost

- For simplicity, assume that $\delta=1$
- Period t utility from the task being done in period τ is:
 - Immediate costs case

$$eta v_ au - eta c_ au$$
 if $au > t$
 $eta v_ au - c_ au$ if $au = t$

• Immediate rewards case

$$egin{array}{lll} eta v_{ au} - eta c_{ au} ext{ if } au &> t \ v_{ au} - eta c_{ au} ext{ if } au &= t \end{array}$$

- Example 1: Writing a referee report in the next 4 weeks
- Costs are immediate, rewards delayed
 - Rewards: $v = \{0, 0, 0, 0\}$
 - Costs: *c* = {3, 5, 8, 15}
- Report has to be done in week 4 if not done before
- Time consistent agent (eta=1) will do the report in week 1
- Sophisticated agent with $\beta = \frac{1}{2}$?
 - In week 3 would delay (8 vs 15/2)
 - In week 2 would do report (5 vs 15/2)
 - In week 1 will delay (3 vs 5/2)
 - Report is done in week 2
- Naive agent with $\beta = \frac{1}{2}$?
 - will end up doing the report in week 4
 - Always thinks they will do the report next week

- Example 2: Choosing when to see a movie
- Costs are delayed, rewards immediate
 - Rewards: $v = \{3, 5, 8, 13\}$
 - Costs: $c = \{0, 0, 0, 0\}$
- Movie has to be seen in week 4 if not done before
- Time consistent agent (eta=1) will see the movie in week 4
- Sophisticated agent with $\beta = \frac{1}{2}$?
 - In week 3 would choose to see it (8 vs 13/2)
 - In week 2 would choose to see it (5 vs 4)
 - In week 1 would choose to see it (3 vs 5/2)
 - Will see the movie in week 1
- Naive agent with $\beta = \frac{1}{2}$?
 - In week 3 would see movie (8 vs 13/2)
 - In week 2 will delay (5 vs 13/2)
 - In week 1 will delay (3/13/2)
 - Will see movie in week 3

- Proposition: Naive decision makers will always take action later than sophisticates
 - Immediate costs: Sophisticates recognize future procrastination and act to avoid it
 - Immediate rewards: Sophisticates recognize future 'greed', and act to preempt it

A Different Approach to Commitment

- So far we have considered how external commitment devices can help people with temptation problems
- The next two papers we will look at will use the tools of game theory suggest that people may be able to 'self commit'
 - Bernheim, B. Douglas, Debraj Ray, and Şevin Yeltekin. "Poverty and self-control." Econometrica 83.5 (2015): 1877-1911.
 - Bénabou, Roland, and Jean Tirole. "Willpower and personal rules." Journal of Political Economy 112.4 (2004): 848-886.
- Will allow us to think about 'personal rules'
 - Only smoke when out of the country
 - Only drink on weekends
 - Go to the gym on Mondays, Wednesdays and Fridays

Subgame Perfection

- As discussed, we can model the actions of a quasi-hyperbolic player as a dynamic game
 - Each player 'in charge' for one period only
 - Takes the strategies of other players as given
- Dynamic games have been heavily studied
- A general 'rule'
 - Good outcomes can be supported in equilibrium through the threat of bad actions in the future
 - e.g. in repeated prisoner dilemma games co-operation can be supported by trigger strategies
 - If players deviate in period *t* then stop co-operating in future periods
- In order for threats to be credible, they need to be subgame perfect

- BRY [2015] apply the same idea to quasi-hyperbolic agent
- Allow strategies of the player to be history dependent
- There are equilibria in which good behavior at time t can be supported by the threat of (equilibrium) bad behavior in the future
- Has the feeling of a 'personal rule'
 - If I have a burger for lunch today I will have a burger for lunch again tomorrow

Subgame Perfection

- Apply this logic to a consumption/savings example
- What is 'good' and 'bad' behavior'?
 - Good behavior: Savings
 - Bad behavior: (over) consuming
- Savings today can be supported by the threat of high consumption tomorrow
- Key finding: **IF** accumulation depends on the initial asset level then
 - There is always a level below which assets decline to zero
 - Another level above which assets grow unboundedly

Poverty Trap

- 'Poverty trap': If assets are too low, then the threat of high consumption is not very threatening
 - Turns out it is a bit more complex than that
- Best equilibrium strategy has a nice simple structure
 - Set a savings rule
 - If violated, binge for at most two periods
- Still, how is this equilibrium being selected?

- BYR provide one reason why personal rules may be effective
 - To avoid equilibrium punishment in the future
- Benabou and Tirole [2004] have another answer:
 - Signal about the strength of willpower

Set up

• Two periods, two subperiods

FIG. 1.—Decisions and payoffs in any given period t = 1, 2

- Discounting δ between periods 1 and 2
- Time inconsistency:
 - At the time of decision between NW and a is valued at a/γ for $\gamma \leq 1$
 - At the time of decision between G and P c is valued at c/β for $\beta \leq 1$

Set up

• Note latter assumption means that subperiod I agent would prefer *P* as long as

$$c \leq B - b$$

• But *P* will only be chosen if

$$\frac{c}{\beta} \leq B - b$$

• Similarly former assumption means that period 1 agent would prefer W if its expected value is greater than a, but will only be chosen if it is greater than a/γ

- Key Assumption: β is not know perfectly. Can either be β_H or β_L with

$$\beta_L < \beta_H \le 1$$

- Prior ρ_1 on β_H
- Imperfect recall: will discover β in period 1:2 if is chosen, but then forgets it
- If the DM 'lapses' (i.e. chooses G) in state 1 they will remember it with probability λ

- Model this as a game between multiple agents
- Solution concepts: Perfect Bayesian Equilibrium
 - Previous 'players' can try to hide information
 - But beliefs will be correct given the information each player has

Personal Rules

First assume

$$\frac{c}{\beta_H} < B - b < \frac{c}{\beta_L}$$

so in the second period DM will choose p only if they are of type β_L

- This means that in second period, DM will only choose W if $\rho > \rho_2^*$ defined by

$$\rho_2^*(B-c)+(1-\rho_2^*)b=\mathsf{a}/\gamma$$

 To make things stark, assume b > a so period 1 DM would prefer even if they give up • Let $V_2^I(\rho)$ be the value of being selected in period 2 from the perspective of type I in period 1, as a function of beliefs ρ

$$egin{array}{rcl} V_2^H(
ho) &=& p_2(
ho)(B-c)+(1-p_2(
ho)) a \ V_2^L(
ho) &=& p_2(
ho)(b-c)+(1-p_2(
ho)) a \end{array}$$

- Where $p_2(\rho)$ is the probability of choosing given beliefs ρ
 - So in this case $p_2(
 ho)=1$ if $ho>
 ho_2^*$

- Assume lapses weakly lower ho
- This means that for type β_1 P is a dominant strategy
- For type β_H they will choose P if

$$\frac{c}{\beta_H} - B - b \le \delta \lambda \left[V_2^L(\rho_2^+) - V_2^L(\rho_2^-) \right]$$

where ρ_2^+ and ρ_2^- are the values of ρ if there is not and is a recalled lapse

• The RHS is the benefit of self-reputation

Equilibrium

• Let
$$\hat{
ho}_1(\lambda) = rac{(1-\lambda)
ho_2^*}{1-\lambda
ho_2^*}$$

This game has a unique equilibrium

- 1) if ρ_1 is below a threshold $\rho_1^* < \rho_2^*$ then NW is chosen in the first period
- 2 If $\rho_1 > \rho_1^*$ then is chosen, and β_L always chooses P, while β_H
 - **1** Always chooses P if $\rho > \rho_2^*$
 - 2 Never chooses *P* if $\rho < \hat{\rho}_1(\lambda)$
 - Sor intermediate values choose P with a probability q₁^{*} defined as the solution to

$$\rho_2^+ = \frac{\rho_1}{\rho_1 + (1 - \rho_1)q_1 + (1 - \lambda)(1 - q_1)} = \rho_2^*$$

Set up

FIG. 2.-Self-control by the weak-willed

- Systematic preference reversals present a challenge to the standard model of time separable, exponential discounting
 - A violation of stationarity
- There is a strong theoretical link between preference reversals, non-exponential discounting and preference for commitment
- Quasi-hyperbolic discounting model a popular alternative used to explain the data
 - Treats today as special
- Can be used to model a wide variety of phenomena
 - Demand for liquid assets
 - Procrastination
- Pinning down the precise implications of the q-hyperbolic model is
 - Easy in choice over consumption streams
 - Harder in choice in consumption savings problems

- There are not a lot of naturally occurring commitment devices out there
- But people can be induced to take up commitment
 - Often will not pay for it
- Two possible reasons for this
 - Preference for flexibility
 - Lack of sophistication

There is evidence for both of these

- Time preference experiments run with money are problematic
- Other tasks may be better
 - Show more present bias
- There is a link between present bias and preference for commitment