Introduction

Mark Dean

Behavioral Economics G6943
Fall 2018

Outline

(1) Introduction
(2) Utility and Choice: A Reminder

Why Representation Theorems are Useful
Extensions
(3) Testing Axioms in Practice

Goodness of Fit Measures
Power Measures

Aim for Today

- Nuts and bolts
- See syllabus
- Utility and choice: A reminder
- The importance of representation theorems
- Some extensions
- Taking axioms to data
- Goodness of fit
- Power
- Classic failures of utility maximization

Outline

(1) Introduction

(2) Utility and Choice: A Reminder Why Representation Theorems are Useful Extensions
(3) Testing Axioms in Practice Goodness of Fit Measures Power Measures

Outline

(1) Introduction
(2) Utility and Choice: A Reminder Why Representation Theorems are Useful Extensions
(3) Testing Axioms in Practice

Goodness of Fit Measures
Power Measures

A Representation Theorem for Utility Maximization

- The following should be familiar from your 1st year PhD class.
- First we defined a data set

Definition

For a finite set of alternatives X, a choice correspondence C is a mapping $C: 2^{X} / \varnothing \rightarrow 2^{X} / \varnothing$ such that $C(A) \subset A$ for all $A \in 2^{X} / \varnothing$.

A Representation Theorem for Utility Maximization

- The following should be familiar from your 1st year PhD class.
- First we defined a data set

Definition

For a finite set of alternatives X, a choice correspondence C is a mapping $C: 2^{X} / \varnothing \rightarrow 2^{X} / \varnothing$ such that $C(A) \subset A$ for all $A \in 2^{X} / \varnothing$.

- Next we defined a model of behavior

Definition

A utility function $u: X \rightarrow \mathbb{R}$ rationalizes a choice correspondence C if

$$
C(A)=\arg \max _{x \in A} u(x)
$$

If there exists a choice correspondence that rationalizes C then we say it has a utility representation

A Representation Theorem for Utility Maximization

- Then we defined some conditions (or axioms) on the data

Axiom α (AKA Independence of Irrelevant Alternatives) If $x \in B \subseteq A$ and $x \in C(A)$, then $x \in C(B)$
Axiom β If $x, y \in C(A), A \subseteq B$ and $y \in C(B)$ then $x \in C(B)$

A Representation Theorem for Utility Maximization

- Then we defined some conditions (or axioms) on the data

Axiom α (AKA Independence of Irrelevant Alternatives) If $x \in B \subseteq A$ and $x \in C(A)$, then $x \in C(B)$
Axiom β If $x, y \in C(A), A \subseteq B$ and $y \in C(B)$ then $x \in C(B)$

- Before stating a representation theorem linking these conditions and the model

Theorem
A Choice Correspondence on a finite X has a utility representation
if and only if it satisfies axioms α and β

A Representation Theorem for Utility Maximization

- And stating a uniqueness result

Theorem
Let $u: X \rightarrow \mathbb{R}$ be a utility representation for a Choice Correspondence C. Then $v: X \rightarrow \mathbb{R}$ will also represent C if and only if there is a strictly increasing function T such that

$$
v(x)=T(u(x)) \forall x \in X
$$

A Representation Theorem for Utility Maximization

- And stating a uniqueness result

Theorem
Let $u: X \rightarrow \mathbb{R}$ be a utility representation for a Choice Correspondence C. Then $v: X \rightarrow \mathbb{R}$ will also represent C if and only if there is a strictly increasing function T such that

$$
v(x)=T(u(x)) \forall x \in X
$$

- If any of this is unfamiliar have a look at the detailed notes I'll put online

Representation Theorems: Why?

- Why was this a good idea?

Representation Theorems: Why?

- Why was this a good idea?
- (For me) the most important reason is that the model of utility maximization has unobservable (or latent) variables
- Without a representation theorem it is hard to know what its observable implications are?
- How could we test utility maximization in the lab if we don't observe utility
- Alternative: define an observable measure of utility
- E.g. Bentham's felicific calculus
- But this is now a joint test of the hypothesis of utility maximization and the type of utility specified
- In contrast, a representation theorem gives a precise way to test the entire class of utility maximizing models
- Necessary: if the data is consistent with utility maximization then it must satisfy those conditions
- Sufficient: If it satisfies those conditions, then it is consistent with utility maximization

Representation Theorems: Why?

- Two added bonuses
(1) By making the observable implications clear, such theorems make it clear if and how different models make different predictions
(2) Uniqueness result tells us how seriously to take the unobservable elements of the model
- e.g. how well identified utility is

Representation Theorems: Why?

- Two added bonuses
(1) By making the observable implications clear, such theorems make it clear if and how different models make different predictions
(2) Uniqueness result tells us how seriously to take the unobservable elements of the model
- e.g. how well identified utility is
- What has this got to do with behavioral economics?
- Throughout the course we are going to be adding constraints and motivations to our model of decision making
- Attention costs, temptation, regret, beliefs etc
- Which may not be directly observable
- Without the use of representation theorem it is very hard to keep track of what behavior we are admitting by allowing these new psychological processes

Preferences

- Will give an example of this in a minute
- First, a quick reminder about preferences

Definition

A (complete) preference relation is a (complete), transitive and reflexive binary relation

Definition

We say a complete preference relation \succeq represents a choice correspondence C if

$$
C(A)=\{x \in A \mid x \succeq y \forall y \in A\}
$$

Preferences

- You should also remember from your class last year two important theorems regarding preferences

Theorem

Let C be a choice correspondence on a finite set X. Then there exists a preference relation \succeq which represents C-i.e.

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

if and only if C satisfies axioms α and β

Preferences

- You should also remember from your class last year two important theorems regarding preferences

Theorem

Let C be a choice correspondence on a finite set X. Then there exists a preference relation \succeq which represents C-i.e.

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

if and only if C satisfies axioms α and β
Theorem
Let \succeq be a binary relation on a finite set X. Then there exists a utility function $u: X \rightarrow \mathbb{R}$ which represents \succeq : i.e.

$$
\begin{aligned}
u(x) & \geq u(y) \text { if and only if } \\
x & \succeq y
\end{aligned}
$$

if and only if \succeq is a preference relation

The Importance of Representation Theorems: An Example

- As we will see in future lectures, choices may be affected by reference points as well as the set of available options
- What you choose may depend on your point of reference
- One key question is where do reference points come from?
- In 2005 Koszegi and Rabin proposed a model of 'personal equilibrium'
- People have 'rational expectations'
- Reference point should be what you expect to happen
- But what you expect to happen should be what you would choose given your reference point
- An option is a personal equilibrium if it is what you would choose if that is your reference point

The Importance of Representation Theorems: An Example

- Let $U: X \times X \rightarrow \mathbb{R}$ be a reference dependent utility function
- $U(x, z)$ is the utility of choosing alternative x when z is the status quo
- A choice correspondence satisfies the 'general' PE model if

$$
C(A)=\{x \in A \mid U(x, x) \geq U(y, x) \forall y \in A\}
$$

- A choice correspondence satisfies the 'specific' PE model if in addition it satisfies
(1) U has the following functional form:

$$
U(x, y)=\sum_{k \in K} u_{k}(x)+\sum_{j \in K} \mu\left(u_{j}(x)-u_{j}(y)\right)
$$

(2) 'Status quo bias'

$$
\begin{aligned}
U(x, y) & \geq U(y, y) \\
& \Rightarrow U(x, x)>U(y, x)
\end{aligned}
$$

The Importance of Representation Theorems: An Example

Gul and Pesendorfer

Theorem

Let $C: 2^{X} / \varnothing \rightarrow 2^{X} / \varnothing$ be a choice function on a finite X The following statements are equivalent
(1) (General PE model): There exists a general PE utility function $U: X \times X \rightarrow \mathbb{R}$ such that

$$
C(A)=\{x \in A \mid U(x, x) \geq U(y, x) \forall y \in A\}
$$

(2 There exists a complete, reflexive binary relation \succeq such that

$$
C(A)=\{x \in A \mid x \succeq y \forall y \in A\}
$$

3 (Special PE model) There exists a special PE utility function $U: X \times X \rightarrow \mathbb{R}$ such that

$$
C(A)=\{x \in A \mid U(x, x) \geq U(y, x) \forall y \in A\}
$$

Outline

(1) Introduction
(2) Utility and Choice: A Reminder

Why Representation Theorems are Useful

Extensions

(3) Testing Axioms in Practice

Goodness of Fit Measures
Power Measures

Problems with the Data

- Recall the definition of the data set we have

Definition

For a finite set of alternatives X, a choice correspondence C is a mapping $C: 2^{X} / \varnothing \rightarrow 2^{X} / \varnothing$ such that $C(A) \subset A$ for all $A \in 2^{X} / \varnothing$.

- What are some problems with this data set?

Problems with the Data

- Recall the definition of the data set we have

Definition

For a finite set of alternatives X, a choice correspondence C is a mapping $C: 2^{X} / \varnothing \rightarrow 2^{X} / \varnothing$ such that $C(A) \subset A$ for all $A \in 2^{X} / \varnothing$.

- What are some problems with this data set?
(1) X Finite
(2) Observe choices from all choice sets
(3) We allow for people to choose more than one option!
- i.e. we allow for data of the form

$$
C(\{x, y, z\})=\{x, y\}
$$

Finiteness

- Why might it be a problem that we have assumed X is finite?

Finiteness

- Why might it be a problem that we have assumed X is finite?
- From a theory perspective might want to talk about choice from non-finite domains
- Such as budget sets
- Actually not so much of an issue from an experimental/data point of view

Finiteness

- Why might it be a problem that we have assumed X is finite?
- From a theory perspective might want to talk about choice from non-finite domains
- Such as budget sets
- Actually not so much of an issue from an experimental/data point of view
- What problems do we have if we move to non-finite domains?

Finiteness

- Recall we have two theorems on the books

Theorem
Let C be a choice correspondence on a finite set X. Then there exists a preference relation \succeq which represents C - i.e.

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

if and only if C satisfies axioms α and β

Finiteness

- Recall we have two theorems on the books

Theorem
Let C be a choice correspondence on a finite set X. Then there exists a preference relation \succeq which represents C - i.e.

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

if and only if C satisfies axioms α and β

- This in fact will go through if we drop the world finite

Finiteness

Theorem
Let \succeq be a binary relation on a finite set X. Then there exists a utility function $u: X \rightarrow \mathbb{R}$ which represents $\succeq:$ i.e.

$$
\begin{aligned}
u(x) & \geq u(y) \text { if and only if } \\
x & \succeq y
\end{aligned}
$$

if and only if \succeq is a preference relation

- This will go through if we replace finite with countable
- Standard proof
- But will not go through if we drop it altogether
- Classic counterexample - lexicographic preferences

Finiteness

- Need to assume something else
- Standard way forward is to require continuity

Definition

A preference relation \succeq on a metric space X is continuous if, for any $x, y \in X$ such that $x \succ y$, there exists an $\varepsilon>0$ such that, for any $x^{\prime} \in B(x, \varepsilon)$ and $y^{\prime} \in B(y, \varepsilon), x^{\prime} \succ y^{\prime}$

Finiteness

- Need to assume something else
- Standard way forward is to require continuity

Definition

A preference relation \succeq on a metric space X is continuous if, for any $x, y \in X$ such that $x \succ y$, there exists an $\varepsilon>0$ such that, for any $x^{\prime} \in B(x, \varepsilon)$ and $y^{\prime} \in B(y, \varepsilon), x^{\prime} \succ y^{\prime}$

Theorem (Debreu)

Let X be a separable metric space, and \succeq be a complete preference relation on X. If \succeq is continuous, then it can be represented by a continuous utility function.

Finiteness

- Need to assume something else
- Standard way forward is to require continuity

Definition

A preference relation \succeq on a metric space X is continuous if, for any $x, y \in X$ such that $x \succ y$, there exists an $\varepsilon>0$ such that, for any $x^{\prime} \in B(x, \varepsilon)$ and $y^{\prime} \in B(y, \varepsilon), x^{\prime} \succ y^{\prime}$

Theorem (Debreu)

Let X be a separable metric space, and \succeq be a complete preference relation on X. If \succeq is continuous, then it can be represented by a continuous utility function.

- Note: continuity cannon be violated in finite data sets.

Choices from all Choice Sets?

- Imagine running an experiment to try and test α and β
- The data that we need is the choice correspondence

$$
C: 2^{x} / \varnothing \rightarrow 2^{x} / \varnothing
$$

- How many choices would we have to observe?
- Lets say $|X|=10$
- Need to observe choices from every $A \in 2^{X} / \varnothing$
- How big is the power set of X ?
- If $|X|=10$ need to observe 1024 choices
- If $|X|=20$ need to observe 1048576 choices
- This is not going to work!

Choices from all Choice Sets?

- So how about we forget about the requirement that we observe choices from all choice sets
- Are α and β still enough to guarantee a utility representation?

Choices from all Choice Sets?

- So how about we forget about the requirement that we observe choices from all choice sets
- Are α and β still enough to guarantee a utility representation?

$$
\begin{aligned}
& C(\{x, y\})=\{x\} \\
& C(\{y, z\})=\{y\} \\
& C(\{x, z\})=\{z\}
\end{aligned}
$$

- If this is our only data then there is no violation of α or β
- But no utility representation exists
- Note this is a problem for many behavioral models as well
- see "Bounded Rationality and Limited Data Sets" de Clippel and Rozen [2018]

A Diversion into Order Theory

- In order to do this we are going to have to know a few more things about order theory (the study of binary relations)
- In particular we are going to need some definitions

A Diversion into Order Theory

- In order to do this we are going to have to know a few more things about order theory (the study of binary relations)
- In particular we are going to need some definitions

Definition
A transitive closure of a binary relation R is a binary relation $T(R)$ that is the smallest transitive binary relation that contains R.

A Diversion into Order Theory

- In order to do this we are going to have to know a few more things about order theory (the study of binary relations)
- In particular we are going to need some definitions

Definition

A transitive closure of a binary relation R is a binary relation $T(R)$ that is the smallest transitive binary relation that contains R.

- i.e. $T(R)$ is
- Transitive
- Contains R in the sense that $x R y$ implies $x T(R) y$
- Any binary relation that is smaller (in the subset sense) is either intransitive or does not contain R

A Diversion into Order Theory

- In order to do this we are going to have to know a few more things about order theory (the study of binary relations)
- In particular we are going to need some definitions

Definition

A transitive closure of a binary relation R is a binary relation $T(R)$ that is the smallest transitive binary relation that contains R.

- i.e. $T(R)$ is
- Transitive
- Contains R in the sense that $x R y$ implies $x T(R) y$
- Any binary relation that is smaller (in the subset sense) is either intransitive or does not contain R
- Example?

A Diversion into Order Theory

- We can alternatively define the transitive closure of a binary relation R on X as the following:

Remark

- (1) Define $R_{0}=R$
(2) Define R_{m} as $x R_{m} y$ if there exists $z_{1}, \ldots, z_{m} \in X$ such that $x R z_{1} R \ldots R z_{m} R y$
(3) $T=R \cup_{i \in \mathbb{N}} R_{m}$

A Diversion into Order Theory

Definition

Let \succeq be a preorder on X. An extension of \succeq is a preorder \unrhd such that

Where

- \succ is the asymmetric part of \succeq, so $x \succ y$ if $x \succeq y$ but not $y \succeq x$
- \triangleright is the asymmetric part of \unrhd, so $x \triangleright y$ if $x \unrhd y$ but not $y \unrhd x$

A Diversion into Order Theory

Definition

Let \succeq be a preorder on X. An extension of \succeq is a preorder \unrhd such that

Where

- \succ is the asymmetric part of \succeq, so $x \succ y$ if $x \succeq y$ but not $y \succeq x$
- \triangleright is the asymmetric part of \unrhd, so $x \triangleright y$ if $x \unrhd y$ but not $y \unrhd x$
- Example?

A Diversion into Order Theory

- We are also going to need one theorem

Theorem (Sziplrajn)
For any nonempty set X and preorder \succeq on X there exists a complete preorder that is an extension of \succeq

A Diversion into Order Theory

- We are also going to need one theorem

Theorem (Sziplrajn)
For any nonempty set X and preorder \succeq on X there exists a complete preorder that is an extension of \succeq

- Relatively easy to prove if X is finite, but also true for any arbitrary X

Revealed Preference

- Okay, back to choice
- The approach we are going to take is as follows:
- Imagine that the model of preference maximization is correct
- What observations in our data would lead us to conclude that x was preferred to y ?

Revealed Preference

- We say that x is directly revealed preferred to $y\left(x R^{D} y\right)$ if, for some choice set A

$$
\begin{aligned}
& y \in A \\
& x \in C(A)
\end{aligned}
$$

Revealed Preference

- We say that x is directly revealed preferred to $y\left(x R^{D} y\right)$ if, for some choice set A

$$
\begin{aligned}
& y \in A \\
& x \in C(A)
\end{aligned}
$$

- We say that x is revealed preferred to $y(x R y)$ if we can find a set of alternatives $w_{1}, w_{2}, \ldots . w_{n}$ such that
- x is directly revealed preferred to w_{1}
- w_{1} is directly revealed preferred to w_{2}
- w_{n-1} is directly revealed preferred to w_{n}
- w_{n} is directly revealed preferred to y
- I.e. R is the transitive closure of R^{D}

Revealed Preference

- We say x is strictly revealed preferred to $y(x S y)$ if, for some choice set A

$$
\begin{aligned}
& y \in A \text { but not } y \in C(A) \\
& x \in C(A)
\end{aligned}
$$

The Generalized Axiom of Revealed Preference

- Note that we can observe revealed preference and strict revealed preference from the data
- With these definitions we can write an axiom to replace α and β
- What behavior is ruled out by utility maximization?

The Generalized Axiom of Revealed Preference

- Note that we can observe revealed preference and strict revealed preference from the data
- With these definitions we can write an axiom to replace α and β
- What behavior is ruled out by utility maximization?

Definition

A choice correspondence C satisfies the Generalized Axiom of Revealed Preference (GARP) if it is never the case that x is revealed preferred to y, and y is strictly revealed preferred to x

- i.e. $x R y$ implies not $y S x$

The Generalized Axiom of Revealed Preference

Theorem
A choice correspondence C on an arbitrary subset of $2^{X} / \oslash$
satisfies GARP if and only if it has a preference representation
Corollary
A choice correspondence C on an arbitrary subset of $2^{X} / \oslash$ with X finite satisfies GARP if and only if it has a utility representation

The Generalized Axiom of Revealed Preference

Theorem
A choice correspondence C on an arbitrary subset of $2^{X} / \oslash$
satisfies GARP if and only if it has a preference representation
Corollary
A choice correspondence C on an arbitrary subset of $2^{X} / \oslash$ with X finite satisfies GARP if and only if it has a utility representation

Choices from all Choice Sets?

- Note that this data set violates GARP

$$
\begin{aligned}
& C(\{x, y\})=\{x\} \\
& C(\{y, z\})=\{y\} \\
& C(\{x, z\})=\{z\}
\end{aligned}
$$

- $x R^{D} y$ and $y R^{D} z$ so $x R z$
- But $z S x$

The Generalized Axiom of Revealed Preference

- Proof: GARP implies representation
- First, note that R is transitive (and without loss of generality we can assume it is reflexive)
- Also note that, by GARP, S is the asymmetric part of R
- This means that, by Sziplrajn's theorem there exists a complete preference relation \succeq such that

$$
\begin{aligned}
x R y \text { implies } x & \succeq y \\
x \text { Sy implies } x & \succ y
\end{aligned}
$$

The Generalized Axiom of Revealed Preference

- All we need to show is that \succeq represents choice, i.e

$$
C(A)=\{x \in A \mid x \succeq y \text { all } y \in A\}
$$

- Again, need to show two things
(1) $x \in C(A) \Rightarrow x \succeq y$ all $y \in A$
- This follows from the fact that $x \in C(A) \Rightarrow x R^{D} y \forall y \in A$ and so $x \succeq y \forall y \in A$
(2) $x \in A$ and $x \succeq y$ all $y \in A \Rightarrow x \in C(A)$
- Assume by way of contradiction $x \notin C(A)$, and take $y \in C(A)$
- This implies that $y S x$ and so $y \succ x$ and therefore not $x \succeq y$
- Contradiction

Choice Correspondence?

- Another weird thing about our data is that we assumed we could observe a choice correspondence
- Multiple alternatives can be chosen in each choice problem
- This is not an easy thing to do!
- What about if we only get to observe a choice function?
- Only one option chosen in each choice problem
- How do we deal with indifference?

Choice Correspondence?

- One of the things we could do is assume that the decision maker chooses one of the best options

$$
C(A) \in \arg \max _{x \in A} u(x)
$$

- Is this going to work?

Choice Correspondence?

- One of the things we could do is assume that the decision maker chooses one of the best options

$$
C(A) \in \arg \max _{x \in A} u(x)
$$

- Is this going to work?
- No!
- Any data set can be represented by this model
- Why?

Choice Correspondence?

- One of the things we could do is assume that the decision maker chooses one of the best options

$$
C(A) \in \arg \max _{x \in A} u(x)
$$

- Is this going to work?
- No!
- Any data set can be represented by this model
- Why?
- We can just assume that all alternatives have the same utility!

Choice Correspondence?

- Another thing we can do is assume away indifference

$$
C(A)=\arg \max _{x \in A} u(x)
$$

- for some one-to-one function u
- Is this going to work?

Choice Correspondence?

- Another thing we can do is assume away indifference

$$
C(A)=\arg \max _{x \in A} u(x)
$$

- for some one-to-one function u
- Is this going to work?
- Yes
- Implies that data is a function
- Property α (or GARP) will be necessary and sufficient (if X is finite)

Choice Correspondence?

- Another thing we can do is assume away indifference

$$
C(A)=\arg \max _{x \in A} u(x)
$$

- for some one-to-one function u
- Is this going to work?
- Yes
- Implies that data is a function
- Property α (or GARP) will be necessary and sufficient (if X is finite)
- But maybe we don't want to rule out indifference!
- Maybe people are sometimes indifferent!

Identifying Strict Preferences

- Need some way of identifying when an alternative x is better than alternative y
- i.e. some way to identify strict preference

Identifying Strict Preferences

- Need some way of identifying when an alternative x is better than alternative y
- i.e. some way to identify strict preference
- In the lab we can do this by (for example) getting people to pay for one alternative over another
- Another case in which we can do this is if our data comes from people choosing from budget sets
- Should be familiar from previous economics courses

Identifying Strict Preferences

- The objects that the DM has to choose between are bundles of different commodities

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

- And they can choose any bundle which satisfies their budget constraint

$$
\left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} p_{i} x_{i} \leq 1\right\}
$$

Monotonicity

- Claim: We can use choice from budget sets to identify strict preference
- Even if we only see a single bundle chosen from each budget set
- As long as we assume something about how preferences work

Monotonicity

Definition

We say preferences \succsim are locally non-satiated on a metric space X if, for every $x \in X$ and $\varepsilon>0$, there exists

$$
\begin{aligned}
y \in & B(x, \varepsilon) \\
& \quad \text { such that } \\
y & \succ
\end{aligned}
$$

Lemma

Let x^{j} and x^{k} be two commodity bundles such that $p^{j} x^{k}<p^{j} x^{j}$. If the DM's choices can be rationalized by a complete locally non-satiated preference relation, then it must be the case that
$x^{j} \succ x^{k}$

Revealed Preference

- When dealing with choice from budget sets we say
- x is directly revealed preferred to y if $p^{x} x \geq p^{x} y$
- x is revealed preferred to y if we can find a set of alternatives $w_{1}, w_{2}, \ldots . w_{n}$ such that
- x is directly revealed preferred to w_{1}
- w_{1} is directly revealed preferred to w_{2}
- w_{n-1} is directly revealed preferred to w_{n}
- w_{n} is directly revealed preferred to y
- x is strictly revealed preferred to y if $p^{x} x>p^{x} y$

Afriat's Theorem

Theorem (Afriat)

Let $\left\{x^{1}, \ldots . x^{\prime}\right\}$ be a set of chosen commodity bundles at prices $\left\{p^{1}, \ldots, p^{\prime}\right\}$. The following statements are equivalent:
(1) The data set can be rationalized by a locally non-satiated set of preferences \succeq that can be represented by a utility function
(2) The data set satisfies GARP (i.e. xRy implies not ySx)
(3) There exists positive $\left\{u^{i}, \lambda^{i}\right\}_{i=1}^{\prime}$ such that

$$
u^{i} \leq u^{j}+\lambda^{j} p^{j}\left(x^{i}-x^{j}\right) \forall i, j
$$

(4) There exists a continuous, concave, piecewise linear, strictly monotonic utility function u that rationalizes the data

Things to note about Afriat's Theorem

- Compare statement 1 and statement 4
- The data set can be rationalized by a locally non-satiated set of preferences \succeq that can be represented by a utility function
- There exists a continuous, concave, piecewise linear, strictly monotonic utility function u that rationalizes the data

Things to note about Afriat's Theorem

- Compare statement 1 and statement 4
- The data set can be rationalized by a locally non-satiated set of preferences \succeq that can be represented by a utility function
- There exists a continuous, concave, piecewise linear, strictly monotonic utility function u that rationalizes the data
- This tells us that there is no empirical content to the assumptions that utility is
- Continuous
- Concave
- Piecewise linear
- If a data set can be rationalized by any locally non-satiated set of preferences it can be rationalized by a utility function which has these properties

Things to note about Afriat's Theorem

- What about statement 3 ?
- There exists positive $\left\{u^{i}, \lambda^{i}\right\}_{i=1}^{\prime}$ such that

$$
u^{i} \leq u^{j}+\lambda^{j} p^{j}\left(x^{i}-x^{j}\right) \forall i, j
$$

- This says that the data is rationalizable if a certain linear programming problem has a solution
- Easy to check computationally
- Less insight than GARP
- But there are some models which do not have an equivalent of GARP but do have an equivalent of these conditions

Things to note about Afriat's Theorem

- Where do these conditions come from?
- Imagine that we knew that this problem was differentiable

$$
\max u(x) \text { subject to } \sum_{j} p_{j}^{i} x_{j} \leq I
$$

with u concave

- FOC for every problem i and good j

$$
\frac{\partial u\left(x^{i}\right)}{\partial x_{j}^{i}}=\lambda^{i} p_{j}^{i}
$$

- Implies

$$
\nabla u\left(x^{i}\right)=\lambda^{i} p^{i}
$$

- where ∇u is the gradient function and p^{i} is the vector of prices

Things to note about Afriat's Theorem

- Recall that for concave functions

$$
u\left(x^{i}\right) \leq u\left(x^{j}\right)+\nabla u\left(x^{j}\right)\left(x^{i}-x^{i}\right)
$$

- i.e. function lies below the tangent
- So

$$
u\left(x^{i}\right) \leq u\left(x^{j}\right)+\lambda^{j} p^{j}\left(x^{i}-x^{j}\right)
$$

Outline

(1) Introduction

(2) Utility and Choice: A Reminder Why Representation Theorems are Useful Extensions

(3) Testing Axioms in Practice

Goodness of Fit Measures
Power Measures

Testing Axioms in Practice

- So I have (hopefully) convinced you that representation theorems are a useful way of testing models with unobservable elements
- What do you think happens when we test these models in practice?

Testing Axioms in Practice

- So I have (hopefully) convinced you that representation theorems are a useful way of testing models with unobservable elements
- What do you think happens when we test these models in practice?
- They are (almost) always rejected!
- This is because axiomatic tests are 'all or nothing'
- One single mistake and an entire data set is declared irrational.

Testing Axioms in Practice

- This raises two related questions
(1) How close is a data set to satisfying a set of axioms?
(2) How much power does a particular data set have to identify violations of a set of axioms
- Techniques for answer these questions are very useful for behavioral economics
- Most behavioral models include the standard model as a special case
- Therefore they must (weakly) be able to explain more choice patterns than the standard model
- How do we tell if the model is doing a good job?

Outline

(1) Introduction
(2) Utility and Choice: A Reminder

Why Representation Theorems are Useful Extensions
(3) Testing Axioms in Practice

Goodness of Fit Measures
Power Measures

The Houtmann Maks Index

- Which of these data sets do you think is closer to being rational?

$$
\begin{array}{ll}
\text { Person A } & \text { Person B } \\
C_{A}(\{x, y\})=\{x\} & C_{B}(\{x, y\})=\{x\} \\
C_{A}(\{x, y, z\})=\{z\} & C_{B}(\{x, y, z\})=\{z\} \\
C_{A}(\{x, z\})=\{z\} & C_{B}(\{x, z\})=\{z\} \\
C_{A}(\{y, z\})=\{y\} & C_{B}(\{y, z\})=\{y\} \\
C_{A}(\{x, y, w\})=\{w\} & C_{B}(\{x, y, w\})=\{y\}
\end{array}
$$

The Houtmann Maks Index

- Which of these data sets do you think is closer to being rational?

$$
\begin{array}{ll}
\text { Person A } & \text { Person B } \\
C_{A}(\{x, y\})=\{x\} & C_{B}(\{x, y\})=\{x\} \\
C_{A}(\{x, y, z\})=\{z\} & C_{B}(\{x, y, z\})=\{z\} \\
C_{A}(\{x, z\})=\{z\} & C_{B}(\{x, z\})=\{z\} \\
C_{A}(\{y, z\})=\{y\} & C_{B}(\{y, z\})=\{y\} \\
C_{A}(\{x, y, w\})=\{w\} & C_{B}(\{x, y, w\})=\{y\}
\end{array}
$$

- Arguably person A
- Because a larger subset of the data is consistent with rationality

The Houtmann Maks Index

- This is the basis of the HM index

Definition

The HM index for a data set D is

$$
\frac{|B|}{|D|}
$$

where B is the largest subset of the data that satisfies the axiomatic system

- Advantages: Can be applied to any data set and axiomatic systems
- Disadvantages: Computationally complex, does not measure the size of the violation

The Afriat Index

- Which data set is closer to rationality?

The Afriat Index

- Which data set is closer to rationality?

- Arguably b as the budget set would have to be moved less in order to restore rationality
- This is the basis of the Afriat index

The Afriat Index

Definition

We say that x is revealed preferred to y at efficiency level e if $e p^{x} x>p^{x} y$.

- Note that $e=1$ is standard revealed preference, and for $e=0$ nothing is revealed preferred

Definition

The Afriat index for a data set is the largest e such that the $e-\mathrm{RP}$ relation satisfies SARP

The Afriat Index

Definition

We say that x is revealed preferred to y at efficiency level e if $e p^{x} x>p^{x} y$.

- Note that $e=1$ is standard revealed preference, and for $e=0$ nothing is revealed preferred

Definition

The Afriat index for a data set is the largest e such that the $e-\mathrm{RP}$ relation satisfies SARP

- Advantages: Computationally simple, takes into account the size of violations
- Disadvantages: Does not take into account number of violations, can only be applied to budget set data

Other Approaches

- There are a number of other approaches to this problem
- Possibly a sign that it has not been fully nailed.
- Echenique, Federico, Sangmok Lee, and Matthew Shum. "The money pump as a measure of revealed preference violations." Journal of Political Economy 119.6 (2011): 1201-1223.
- Dean, Mark, and Daniel Martin. "Measuring rationality with the minimum cost of revealed preference violations." Review of Economics and Statistics 98.3 (2016): 524-534.
- Apesteguia, Jose, and Miguel A. Ballester. "A measure of rationality and welfare." Journal of Political Economy 123.6 (2015): 1278-1310.
- Halevy, Yoram, Dotan Persitz, and Lanny Zrill. "Parametric recoverability of preferences." Journal of Political Economy 126.4 (2018): 1558-1593.
- Aguiar, Victor, and Nail Kashaev. "Stochastic Revealed Preferences with Measurement Error: Testing for Exponential Discounting in Survey Data." (2017).
- Maria Boccardi "Power of Revealed Preferences Tests and Predictive (Un)Certainty" (2018)

Outline

(1) Introduction
(2) Utility and Choice: A Reminder

Why Representation Theorems are Useful Extensions
(3) Testing Axioms in Practice

Goodness of Fit Measures
Power Measures

Other Approaches

- Goodness of fit measures are important
- But they don't tell us everything we need to know

- How likely are we to observe a violation of GARP if we observe choices from these two choice sets?

Other Approaches

- Some data sets have more power that others to detect violations of a particular axiom set
- How do we measure this?
- Bronars [1987] proposed comparing the pass rate observed in the data to the pass rate from randomly generated data using the same parameters
- e.g. we run an experiment in which subjects are asked to make choices from 30 budget sets
- Construct a data set consisting of random choices from the same budget sets
- Compare the fraction of these random data sets that satisfy GARP to the fraction of subjects who do
- You will explore this idea more in the paper you will prepare for next week!

