Introduction

Mark Dean

Behavioral Economics G6943 Fall 2019

Aim for Today

- Nuts and bolts
 - See syllabus
- Utility and choice: A reminder
 - The importance of representation theorems
 - Some extensions
 - Testing Axioms
- Random Utility
- An Introduction to Bounded Rationality

A Representation Theorem for Utility Maximization

- The following should be familiar from your 1st year PhD class.
- First we defined a data set

Definition

For a finite set of alternatives X, a choice correspondence C is a mapping $C: 2^X/\emptyset \to 2^X/\emptyset$ such that $C(A) \subset A$ for all $A \in 2^X/\emptyset$.

Next we defined a model of behavior

Definition

A utility function $u:X\to\mathbb{R}$ rationalizes a choice correspondence C if

$$C(A) = \arg \max_{x \in A} u(x)$$

If there exists a choice correspondence that rationalizes \mathcal{C} then we say it has a **utility representation**

A Representation Theorem for Utility Maximization

Then we defined some conditions (or axioms) on the data

Axiom
$$\alpha$$
 (AKA Independence of Irrelevant Alternatives) If $x \in B \subseteq A$ and $x \in C(A)$, then $x \in C(B)$
Axiom β If $x, y \in C(A)$, $A \subseteq B$ and $y \in C(B)$ then $x \in C(B)$

 Before stating a representation theorem linking these conditions and the model

Theorem

A Choice Correspondence on a finite X has a utility representation if and only if it satisfies axioms α and β

A Representation Theorem for Utility Maximization

And stating a uniqueness result

Theorem

Let $u: X \to \mathbb{R}$ be a utility representation for a Choice Correspondence C. Then $v: X \to \mathbb{R}$ will also represent C if and only if there is a strictly increasing function T such that

$$v(x) = T(u(x)) \ \forall \ x \in X$$

 If any of this is unfamiliar have a look at the detailed notes I'll put online

Representation Theorems: Why?

- Why was this a good idea?
- (For me) the most important reason is that the model of utility maximization has unobservable (or latent) variables
- Without a representation theorem it is hard to know what its observable implications are?
 - How could we test utility maximization in the lab if we don't observe utility
- Alternative: define an observable measure of utility
 - E.g. Bentham's felicific calculus
- But this is now a joint test of the hypothesis of utility maximization and the type of utility specified
- In contrast, a representation theorem gives a precise way to test the entire class of utility maximizing models
 - Necessary: if the data is consistent with utility maximization then it must satisfy those conditions
 - Sufficient: If it satisfies those conditions, then it is consistent with utility maximization

Representation Theorems: Why?

- Two added bonuses
 - 1 By making the observable implications clear, such theorems make it clear if and how different models make different predictions
 - Uniqueness result tells us how seriously to take the unobservable elements of the model
 - · e.g. how well identified utility is
- What has this got to do with behavioral economics?
- Throughout the course we are going to be adding constraints and motivations to our model of decision making
 - Attention costs, temptation, regret, beliefs etc
- Which may not be directly observable
- Without the use of representation theorem it is very hard to keep track of what behavior we are admitting by allowing these new psychological processes

Preferences

- Will give an example of this in a minute
- First, a quick reminder about preferences

Definition

A (complete) preference relation is a (complete), transitive and reflexive binary relation

Definition

We say a complete preference relation \succeq represents a choice correspondence C if

$$C(A) = \{ x \in A | x \succeq y \ \forall \ y \in A \}$$

 You should also remember from your class last year two important theorems regarding preferences

Theorem

Let C be a choice correspondence on a finite set X. Then there exists a preference relation \succeq which represents C - i.e.

$$C(A) = \{x \in A | x \succeq y \text{ for all } y \in A\}$$

if and only if C satisfies axioms α and β

Theorem

Let \succeq be a binary relation on a finite set X. Then there exists a utility function $u: X \to \mathbb{R}$ which represents \succeq : i.e.

$$u(x) \ge u(y)$$
 if and only if $x \succeq y$

if and only if \succ is a preference relation

The Importance of Representation Theorems: An Example

Gul and Pesendorfer

- As we will see in future lectures, choices may be affected by reference points as well as the set of available options
 - What you choose may depend on your point of reference
- One key question is where do reference points come from?
- In 2005 Koszegi and Rabin proposed a model of 'personal equilibrium'
 - People have 'rational expectations'
 - Reference point should be what you expect to happen
 - But what you expect to happen should be what you would choose given your reference point
 - An option is a personal equilibrium if it is what you would choose if that is your reference point

The Importance of Representation Theorems: An Example

- Let $U: X \times X \to \mathbb{R}$ be a reference dependent utility function
 - U(x,z) is the utility of choosing alternative x when z is the status quo
- A choice correspondence satisfies the 'general' PE model if

$$C(A) = \{ x \in A | U(x, x) \ge U(y, x) \ \forall \ y \in A \}$$

- A choice correspondence satisfies the 'specific' PE model if in addition it satisfies
- $oldsymbol{0}$ U has the following functional form:

$$U(x,y) = \sum_{k \in K} u_k(x) + \sum_{i \in K} \mu(u_i(x) - u_i(y))$$

Status quo bias'

$$U(x,y) \ge U(y,y)$$

 $\Rightarrow U(x,x) > U(y,x)$

Theorem

Let $C: 2^X/\varnothing \to 2^X/\varnothing$ be a choice function on a finite X The following statements are equivalent

(General PE model): There exists a general PE utility function $U: X \times X \to \mathbb{R}$ such that

$$C(A) = \{ x \in A | U(x, x) \ge U(y, x) \ \forall \ y \in A \}$$

2 There exists a complete, reflexive binary relation ≥ such that

$$C(A) = \{ x \in A | x \succeq y \ \forall \ y \in A \}$$

3 (Special PE model) There exists a special PE utility function $U: X \times X \to \mathbb{R}$ such that

$$C(A) = \{ x \in A | U(x, x) \ge U(y, x) \ \forall \ y \in A \}$$

Problems with the Data

Recall the definition of the data set we have

Definition

For a finite set of alternatives X, a choice correspondence C is a mapping $C: 2^X/\emptyset \to 2^X/\emptyset$ such that $C(A) \subset A$ for all $A \in 2^X/\emptyset$.

- What are some problems with this data set?
- 1 X Finite
- 2 Observe choices from all choice sets
- 3 We allow for people to choose more than one option!
 - i.e. we allow for data of the form

$$C(\lbrace x, y, z \rbrace) = \lbrace x, y \rbrace$$

- Recall choices can be represented by preferences if α and β is satisfied regardless of the size of X
- For utility representation we usually require something else, typically continuity

Definition

A preference relation \succeq on a metric space X is continuous if, for any $x,y\in X$ such that $x\succ y$, there exists an $\varepsilon>0$ such that, for any $x'\in B(x,\varepsilon)$ and $y'\in B(y,\varepsilon)$, $x'\succ y'$

Theorem (Debreu)

Let X be a separable metric space, and \succeq be a complete preference relation on X. If \succeq is continuous, then it can be represented by a continuous utility function.

• Note: continuity cannon be violated in finite data sets.

Choices from all Choice Sets?

- Imagine running an experiment to try and test lpha and eta
- The data that we need is the choice correspondence

$$C: 2^X/\emptyset \to 2^X/\emptyset$$

- How many choices would we have to observe?
- Lets say |X| = 10
 - Need to observe choices from every $A \in 2^X/\emptyset$
 - How big is the power set of X?
 - If |X| = 10 need to observe 1024 choices
 - If |X| = 20 need to observe 1048576 choices
- This is not going to work!

Choices from all Choice Sets?

- So how about we forget about the requirement that we observe choices from all choice sets
- Are α and β still enough to guarantee a utility representation?

$$C(\{x,y\}) = \{x\}$$

 $C(\{y,z\}) = \{y\}$
 $C(\{x,z\}) = \{z\}$

- If this is our only data then there is no violation of α or β
- But no utility representation exists
- Note this is a problem for many behavioral models as well
 - see "Bounded Rationality and Limited Data Sets" de Clippel and Rozen [2018]

Revealed Preference

 We say that x is directly revealed preferred to y (xR^Dy) if, for some choice set A

$$y \in A$$

 $x \in C(A)$

- We say that x is **revealed preferred to** y (xRy) if we can find a set of alternatives $w_1, w_2, ..., w_n$ such that
 - x is directly revealed preferred to w_1
 - w_1 is directly revealed preferred to w_2
 - ...
 - w_{n-1} is directly revealed preferred to w_n
 - w_n is directly revealed preferred to y
- I.e. R is the transitive closure of R^D

Revealed Preference

 We say x is strictly revealed preferred to y (xSy) if, for some choice set A

$$y \in A \text{ but not } y \in C(A)$$

 $x \in C(A)$

The Generalized Axiom of Revealed Preference

- Note that we can observe revealed preference and strict revealed preference from the data
- With these definitions we can write an axiom to replace α and β
- What behavior is ruled out by utility maximization?

Definition

A choice correspondence C satisfies the Generalized Axiom of Revealed Preference (GARP) if it is never the case that x is revealed preferred to y, and y is **strictly** revealed preferred to x

• i.e. xRy implies not ySx

The Generalized Axiom of Revealed Preference

Theorem

A choice correspondence C on an arbitrary subset of $2^X/\oslash$ satisfies GARP if and only if it has a preference representation

Corollary

A choice correspondence C on an arbitrary subset of $2^X/\oslash$ with X finite satisfies GARP if and only if it has a utility representation

Choice Correspondence?

- Another weird thing about our data is that we assumed we could observe a choice correspondence
 - Multiple alternatives can be chosen in each choice problem
- This is not an easy thing to do!
- What about if we only get to observe a choice function?
 - Only one option chosen in each choice problem
- How do we deal with indifference?
- One way is to figure out how to observe strict preferences

Identifying Strict Preferences

 The objects that the DM has to choose between are bundles of different commodities

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

 And they can choose any bundle which satisfies their budget constraint

$$\left\{x \in \mathbb{R}^n_+ | \sum_{i=1}^n p_i x_i \le I\right\}$$

Monotonicity

Definition

We say preferences \succsim are **locally non-satiated** on a metric space X if, for every $x \in X$ and $\varepsilon > 0$, there exists

$$y \in B(x, \varepsilon)$$

such that $y \succ x$

Lemma

Let x^j and x^k be two commodity bundles such that $p^j x^k < p^j x^j$. If the DM's choices can be rationalized by a complete locally non-satiated preference relation, then it must be the case that $x^j \succ x^k$

Revealed Preference

- When dealing with choice from budget sets we say
 - x is directly revealed preferred to y if $p^{x}x \ge p^{x}y$
 - x is **revealed preferred to** y if we can find a set of alternatives w_1, w_2, w_n such that
 - x is directly revealed preferred to w_1
 - w_1 is directly revealed preferred to w_2
 - ...
 - w_{n-1} is directly revealed preferred to w_n
 - w_n is directly revealed preferred to y
 - x is strictly revealed preferred to y if $p^{x}x > p^{x}y$

Theorem (Afriat)

Let $\{x^1,, x^l\}$ be a set of chosen commodity bundles at prices $\{p^1, ..., p^l\}$. The following statements are equivalent:

- The data set can be rationalized by a locally non-satiated set of preferences ≥ that can be represented by a utility function
- 2 The data set satisfies GARP (i.e. xRy implies not ySx)
- **3** There exists positive $\left\{u^i, \lambda^i\right\}_{i=1}^l$ such that

$$u^{i} \leq u^{j} + \lambda^{j} \rho^{j} (x^{i} - x^{j}) \ \forall \ i, j$$

4 There exists a continuous, concave, piecewise linear, strictly monotonic utility function u that rationalizes the data

Testing Axioms in Practice

- So I have (hopefully) convinced you that representation theorems are a useful way of testing models with unobservable elements
- What do you think happens when we test these models in practice?
- They are (almost) always rejected!
- This is because axiomatic tests are 'all or nothing'
- One single mistake and an entire data set is declared irrational.

Testing Axioms in Practice

- This raises two related questions
 - 1 How close is a data set to satisfying a set of axioms?
 - 2 How much power does a particular data set have to identify violations of a set of axioms
- Techniques for answer these questions are very useful for behavioral economics
 - Most behavioral models include the standard model as a special case
 - Therefore they must (weakly) be able to explain more choice patterns than the standard model
 - How do we tell if the model is doing a good job?

The Houtmann Maks Index

 Which of these data sets do you think is closer to being rational?

Person A Person B
$$C_{A}(\{x,y\}) = \{x\} \qquad C_{B}(\{x,y\}) = \{x\}$$

$$C_{A}(\{x,y,z\}) = \{z\} \qquad C_{B}(\{x,y,z\}) = \{z\}$$

$$C_{A}(\{x,z\}) = \{z\} \qquad C_{B}(\{x,z\}) = \{z\}$$

$$C_{A}(\{y,z\}) = \{y\} \qquad C_{B}(\{y,z\}) = \{y\}$$

$$C_{A}(\{x,y,w\}) = \{w\} \qquad C_{B}(\{x,y,w\}) = \{y\}$$

- Arguably person A
- Because a larger subset of the data is consistent with rationality

The Houtmann Maks Index

This is the basis of the HM index

Definition

The HM index for a data set D is

$$\frac{|B|}{|D|}$$

where B is the largest subset of the data that satisfies the axiomatic system

- Advantages: Can be applied to any data set and axiomatic systems
- Disadvantages: Computationally complex, does not measure the size of the violation

The Afriat Index

Which data set is closer to rationality?

- Arguably b as the budget set would have to be moved less in order to restore rationality
- This is the basis of the Afriat index

Definition

We say that x is revealed preferred to y at efficiency level e if $ep^{x}x > p^{x}y$.

• Note that e=1 is standard revealed preference, and for e=0 nothing is revealed preferred

Definition

The Afriat index for a data set is the largest e such that the e-RP relation satisfies SARP

- Advantages: Computationally simple, takes into account the size of violations
- Disadvantages: Does not take into account number of violations, can only be applied to budget set data

Other Approaches

- There are a number of other approaches to this problem
- Possibly a sign that it has not been fully nailed.
 - Echenique, Federico, Sangmok Lee, and Matthew Shum. "The money pump as a measure of revealed preference violations." Journal of Political Economy 119.6 (2011): 1201-1223.
 - Dean, Mark, and Daniel Martin. "Measuring rationality with the minimum cost of revealed preference violations." Review of Economics and Statistics 98.3 (2016): 524-534.
 - Halevy, Yoram, Dotan Persitz, and Lanny Zrill. "Parametric recoverability of preferences." Journal of Political Economy 126.4 (2018): 1558-1593.
 - Aguiar, Victor, and Nail Kashaev. "Stochastic Revealed Preferences with Measurement Error: Testing for Exponential Discounting in Survey Data." (2017).
 - Maria Boccardi "Power of Revealed Preferences Tests and Predictive (Un)Certainty" (2018)

Other Approaches

- Goodness of fit measures are important
- But they don't tell us everything we need to know

 How likely are we to observe a violation of GARP if we observe choices from these two choice sets?

Other Approaches

- Some data sets have more power that others to detect violations of a particular axiom set
- How do we measure this?
- Bronars [1987] proposed comparing the pass rate observed in the data to the pass rate from randomly generated data using the same parameters
 - e.g. we run an experiment in which subjects are asked to make choices from 30 budget sets
 - Construct a data set consisting of random choices from the same budget sets
 - Compare the fraction of these random data sets that satisfy GARP to the fraction of subjects who do

Random Utility

- Until now, our model has been one of a decision maker who
 - Has a single, fixed utility function
 - Makes choices in order to maximize this utility function
- So if we observe the DM sometimes choose x and sometimes choose y we would declare them irrational
- But maybe this is harsh?
 - Preferences affected by some unobserved state
 - Aggregating across individuals
 - Imperfect perception leading to mistakes

Random Utility

- Maybe a better model is one that accounts for this
- Random utility: Allow for random fluctuations in the utility function
- In order to sensibly talk about this model we need to extend the data set

Definition

For a finite set X and collection of choice sets $\mathcal{D} \subset 2^X/\mathcal{O}$ a random choice rule is a mapping $p: \mathcal{D} \to \triangle(X)$ such that $Supp(p(A)) \subset A$

- We will use p(x, A) to represent the probability of choosing x from A
- Records the probability of choosing each option in each choice set
- Where does stochastic choice come from?
 - Observation from different individuals
 - · Changes in choices by the same individual

Random Utility

Definition

A Random Utility Model (RUM) consists of a finite set of one-to-one utility functions $\mathcal U$ on X and a probability distribution π on $\mathcal U$

- Ruling out indifference (because its a pain)
- Finiteness of \mathcal{U} is without loss of generality (why?)

Definition

A RUM represents a random choice rule ho if, for every $A \in \mathcal{D}$

$$p(x, A) = \sum_{u \in \mathcal{U}|x = rg \max u(A)} \pi(u)$$

 Probability of choosing x from A is equal to the probability of drawing a utility function such that x is the best thing in A

- Is any choice rule compatible with RUM?
- No! One necessary condition is monotonicity

Definition

A random choice rule satisfies monotonicity if for any

$$x \in B \subset A \subseteq X$$

$$p(x, B) \ge p(x, A)$$

 Adding alternatives to a choice set cannot increase the probability of choosing an existing option

Fact

If a Random Choice Rule is rationalizable it must satisfy monotonicity

Proof.

Follows directly from the fact that

$$\{ u \in \mathcal{U} | x = \arg \max u(A) \}$$

$$\subseteq \{ u \in \mathcal{U} | x = \arg \max u(B) \}$$

- So is monotonicity also sufficient for a random choice rule to be consistent with RUM?
- Unfortunately not
- Consider the following example of a stochastic choice rule on $\{x, y, z\}$

$$p(x, \{x, y\}) = \frac{3}{4}$$
 $p(y, \{y, z\}) = \frac{3}{4}$
 $p(z, \{x, z\}) = \frac{3}{4}$

Claim: this pattern of choice is not RUM rationalizable

- Why? Well consider preference ordering such that $z \succ x$
- We know the probability of utility functions consistent with these preferences is equal to $\frac{3}{4}$
- If $z \succ x$ there are three possible linear orders

$$z \succ x \succ y$$

$$z \succ y \succ x$$

$$y \succ z \succ x$$

• In each case, either $y \succ x$ or $z \succ y$ or both, meaning that

$$p(z, \{x, z\}) \le p(y, \{x, y\}) + p(z, \{y, z\})$$

• Which is not true in this data

Block Marschak Inequalities

- Do we have necessary and sufficient conditions for RUM rationalizability?
- · Yes, but they are pretty horrible

Theorem

A random choice rule is RUM rationalizable if and only it satisfies the Block Marschak inequalities: for all $A \in \mathcal{D}$ and $x \in A$

$$\sum_{B|A\subset B} (-1)^{|B/A|} p(x,B) \ge 0$$

- These can be tested, but only on complete data sets, and offer very little intuition.
- What can we do?

Extension 1: Kitamura Stoye

- In a recent paper Kitamura Stoye [ECMA 2018] offered an approach that has two advantages over the Block Marschak inequalities
 - 1 Applies to incomplete data
 - 2 Has an associated statistical test which takes into account the fact that we only observe estimates of \hat{p}
- Will describe the former (see paper for latter)

Kitamura Stoye

- Consider a data set consisting of choices from $\{a_1, a_2\}$, $\{a_1, a_2, a_3\}$ and $\{a_1, a_2, a_3, a_4\}$
- Construct vectors each entry of which relates to a given choice from each choice set

```
a_{1} | \{a_{1}, a_{2}\}
a_{2} | \{a_{1}, a_{2}\}
a_{1} | \{a_{1}, a_{2}, a_{3}\}
a_{2} | \{a_{1}, a_{2}, a_{3}\}
a_{3} | \{a_{1}, a_{2}, a_{3}\}
a_{1} | \{a_{1}, a_{2}, a_{3}, a_{4}\}
a_{2} | \{a_{1}, a_{2}, a_{3}, a_{4}\}
a_{3} | \{a_{1}, a_{2}, a_{3}, a_{4}\}
a_{4} | \{a_{1}, a_{2}, a_{3}, a_{4}\}
```

Kitamura Stoye

• Construct a matrix of all possible rationalizable choice vectors

$$\begin{array}{c} a_1 \,|\, \big\{a_1,\, a_2\big\} \\ a_2 \,|\, \big\{a_1,\, a_2\big\} \\ a_1 \,|\, \big\{a_1,\, a_2,\, a_3\big\} \\ a_2 \,|\, \big\{a_1,\, a_2,\, a_3\big\} \\ a_3 \,|\, \big\{a_1,\, a_2,\, a_3\big\} \\ a_1 \,|\, \big\{a_1,\, a_2,\, a_3,\, a_4\big\} \\ a_2 \,|\, \big\{a_1,\, a_2,\, a_3,\, a_4\big\} \\ a_3 \,|\, \big\{a_1,\, a_2,\, a_3,\, a_4\big\} \\ a_3 \,|\, \big\{a_1,\, a_2,\, a_3,\, a_4\big\} \\ a_4 \,|\, \big\{a_1,\, a_2,\, a_3,\, a_4\big\} \\ a_4 \,|\, \big\{a_1,\, a_2,\, a_3,\, a_4\big\} \end{array} \right. \left. \begin{array}{c} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array} \right. \right\} = A$$

Kitamura Stoye

 Let P be the observed choice probabilities associated with each row of the matrix A

Theorem

P is rationalizable by RUM if and only if their exists a probability vector v such that

$$Av = P$$

 Computationally the tricky bit is computing A But KS have techniques for this A second approach we could take is to restrict ourselves to a specific class of random utility models: e.g. Luce

Definition

A Random Choice rule on a finite set X has a Luce representation if there exists a utility function $u:X\to\mathbb{R}_{++}$ such that for every $A\in\mathcal{D}$ and $x\in A$

$$p(x,A) = \frac{u(x)}{\sum_{y \in A} u(y)}$$

- Advantages:
 - Captures the intuitive notion that 'better things are chosen more often'
 - Equivalent to the Logit form where

$$u(x) = v(x) + \varepsilon$$

and ε has an extreme value type 1 distribution

• The Luce model also has a very clean axiomatization

Definition

A random choice rule p on a set X satisfies stochastic independence of irrelevant alternatives if and only if, for any $x,y\in X$ and $A,B\in\mathcal{D}$ such that $x,y\in A\cap B$

$$\frac{p(x,A)}{p(y,A)} = \frac{p(x,B)}{p(y,B)}$$

Theorem

A random choice rule is rationalizable by the Luce model if and only if it satisfies Stochastic IIA

- Problem: Stochastic IIA sometimes not very appealing:
 - Consider {red bus, car} vs {red bus, blue bus, car}

Extension 3: Change the Domain

- It is beyond the scope of this course, but (perhaps surprisingly) characterizing RUM becomes easier if we put more structure on the choice objects
 - Lotteries: Gul, Faruk, and Wolfgang Pesendorfer. "Random expected utility." Econometrica 74.1 (2006): 121-146.
 - Time dated rewards: Lu, Jay, and Kota Saito. "Random intertemporal choice." Journal of Economic Theory 177 (2018): 780-815.
- See also Lu, Jay. "Random choice and private information."
 Econometrica 84.6 (2016): 1983-2027.