Behavioral Economics

Mark Dean

Homework 2

Due Wednesday 18th February
Please do questions 1 and 2 separately from question 3 for grading purposes.

Question 1 The following describes the Becker-Degroot-Marschak procedure for eliciting the valuation of an object (let's say a Banjo) in an experiment (for convenience, let's assume that no-one should value a banjo over $\$ 1000$)

1. Ask the subject to name their valuation of the Banjo
2. Draw a random number x between 0 and 1000
3. If the x is above the subject's valuation then nothing happens
4. If the x is below their valuation, then they get the banjo and pay x (NOT their valuation)

Show that this procedure is incentive compatible: i.e. that the best thing that a subject can do is announce their true valuation (i.e. the price at which they are indifferent between having the banjo and not)

Question 2 In class we showed that a model of choice in which the chooser formed a consideration set $S(A)$ and chose the best alternative from that set could violate conditions α and β. This question explores this type of model further.

Definition 1 We say a set of choice data can be explained as choice with consideration sets if there is (i) a utility function $u: X \rightarrow \mathbb{R}$ and (ii) a consideration set correspondence $S: 2^{X} / \emptyset \rightarrow 2^{X} / \emptyset$ such that $S(A) \subseteq A$ and

$$
C(A)=\max _{x \in S(A)} u(x)
$$

In other words, for each set $A, S(A)$ defines the set of alternatives that the decision maker considers. They then choose the best option from $S(A)$ according to u.

For simplicity, let's assume that we are dealing with choice functions (not correspondences) and that there is no indifference

1. Show that a model of choice from consideration sets can explain any choice function
2. Now add the restriction

$$
S(A)=S(A / x) \text { if } x \notin S(A)
$$

(by A / x I mean the set A with x removed). In other words, If you did not consider x in choice set A, then removing x from the choice set should not affect what you consider Is the following set of choices consistent with this model?

$$
\begin{aligned}
C(\{x, y, z\}) & =x \\
C(\{x, y\}) & =y
\end{aligned}
$$

3. Show that, if we observe that $C(A) \neq C(A / x)$ (i.e. removing x from A changes the choice from A), it must be the case $x \in S(A)$
4. Show that the model implies the following property (hint, let x^{*} be the object in the set A with the highest utility)

For any non-empty set A, there exists $x^{*} \in A$, such that, for any set B including x^{*} $C(B)=x^{*}$ whenever
(i) $C(B) \in A$ and
(ii) $C(B) \neq C\left(B / x^{*}\right)$
5. Show that, if $x=C(A)$ and $y \in A$, then it is not necessarily the case that $u(x)>u(y)$, but if $C(A)=x \neq C(A \backslash y)$, then it must be the case that $u(x)>u(y)$

Question 3 In the second lecture we discussed the following 3 violations of α : the 'choice difficulty', 'too much choice' and 'compromise/asymmetric dominance effects'. Pick one of these, and
write down a model of behavior that explains this violation (your model can be informal or formal - i.e. in words or maths). Demonstrate why your model would generate the observed effect, and generate a testable prediction for your model (i.e. a set of observations that would lead you to conclude that your model is false).

