
Proof Techniques1

1 Basic Notation

The following is standard notation for proofs:

� A) B. A implies B.

� A( B. B implies A.
Note that A ) B does not mean B ) A. Example: If (A) a person eats two apples, she also
(B) eats one apple. However, if (B) a person eats one apple, that does not imply that she also
(A) eats two apples.

� A, B. A implies B and B implies A.
Another way of saying this is that A holds if and only if (i¤) B holds, or that A is equivalent to
B.

� :A. Not A, or the negation of A.
Example: If A is the event that x � 10, then :A is the event that x > 10.

It is common to use mathematical symbols for words while writing proofs in order to write faster.
The following are commonly used symbols:

8 For all, for any

9 There exists

2 Is contained in, is an element of

3 Such that, contains as an element

� Is a subset of

QED Latin for �quod erat demonstandum�, or �which was to be proven�. A common way to signal to
the reader that you have successfully concluded your proof.

2 Proofs

We seek for ways to prove that A) B.

Remark 1 When we want to prove a general statement then we need to prove it for the general case.
When we want to disprove a statement it su¢ ces to show an example where the statement fails.

1Notes provided with gratitude to Maria Jose Boccardi.
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2.1 Direct Proofs

2.1.1 Deductive Reasoning

A direct proof by deductive reasoning is a sequence of accepted axioms or theorems such that
A0 ) A1 ) A2 ) � � � ) An�1 ) An, where A = A0 and B = An. The di¢ culty is �nding a
sequence of theorems or axioms to �ll the gaps.

Example: Prove the number three is an odd number.

Proof: A number q is odd if there exists an integer m such that q = 2m + 1. Let m = 1. Then
2m+ 1 = 3. Therefore three is an odd number. QED

2.1.2 Contrapositive

A contrapositive proof is just a direct proof of the negation. It makes use of the fact that the
statement A ) B is equivalent to the statement :B ) :A. For example, if (A) all people with
driver�s licenses are (B) at least 16 years old, then if you are not (:B) 16 years old, then you do not
(:A) have a driver�s license. So proving A) B is really the same as proving :B ) :A.

Example: Let x and y be two positive numbers. Prove that if xy > 9, then x > 3 or y > 3.

Proof: Suppose that both x � 3 and y � 3. Then xy � 9. QED (Here A: xy > 9, B: x > 3 or y > 3.
In order to prove A) B we proved :B ) :A.)

2.2 Indirect Proofs

2.2.1 Contradiction

Suppose that we are trying to prove a proposition A, and we cannot prove it directly. However, we
can show that all other alternatives to A are impossible. Then we have indirectly proved that A must
be true. Therefore, the we can prove A) B by �rst assuming that A 6) B and �nding a contradiction.
In other words, we start o¤ by assuming that A is true but B is not. If this leads to a contradiction,
then either B was actually true all along, or A was actually false. But since we assume A is true, then
it must be that B is true, and we have a proof by contradiction.

Example: Prove that
p
2 is an irrational number.

Proof: Suppose not. Then
p
2 is a rational number, so it can be expressed in the form p

q , where p and
q are integers which are not both even. This implies that

2 =
p2

q2
) 2q2 = p2;

which implies that p2 is even, which in turn implies that q2 is not even. The fact that p2 is even also
implies that p is even, so there exists a integer m such that 2m = p. This implies

4m2 = p2 = 2q2 ) q2 = 2m2;

which means that q is even, a contradiction. QED
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2.2.2 Induction

Induction can only be used for propositions about integers or indexed by integers. Consider a list
of statements indexed by the integers. Call the �rst statement P (1), the second P (2), and the nth
statement P (n). If we can prove the following two statements about the sequence, then every statement
in the entire sequence must be true:

1. P (1) is true.

2. If P (k) is true, then P (k + 1) is true.

Induction works because by 1., P (1) is true. By 2., P (2) is true since P (1) is true. Then P (3) is
true by 2. again, and so is P (4) and P (5) and P (6), until we show that all the P�s are true. Notice
that the number of propositions need not be �nite.

Example: Prove that the sum of the �rst n natural numbers is 12n(n+ 1).

Proof: Let n = 1. Then 12 �1(1+1) =
P1
j=1 j = 1. Now let n = k, and assume that

Pk
j=1 j =

1
2k(k+1).

We add k + 1 to both sides to get

k+1X
j=1

j =
1

2
k(k + 1) + k + 1 =

�
1

2
k + 1

�
(k + 1) =

1

2
(k + 1) ((k + 1) + 1) :

QED

3 Examples

3.1 Existence of a utility function

Theorem 2 (Theorem 1 in Lecture Notes 1) For any �nite set X and complete choice correspon-
dence C : 2X=? ! 2X=?, there exists a complete preference relation � that rationalizes that choice
correspondence if and only if C satis�es property � and �.

Proof. The �rst thing to do is note that this proof must come in two parts, as we are making two
claims: this comes from the fact that the statement is �if and only if�, so we have to show (i) that � and
� imply that we can �nd a rationalizing preference relation and (ii) any rationalizable choice function
satis�es � and �. We will start with the former, as this is the more tricky bit (in fact, we have already
argued informally for the latter.)
Proof (axioms imply representation). We will break the proof down into the following steps

1. Generate a candidate binary relation. Our claim is that, if the choice correspondence satis�es
� and �, then it is rationalizable by some complete preference relation. The �rst stage of the
proof is to describe such a relation, which we will then show does the necessary job. We will de�ne
the relationship using choices from two objects by saying that x D y if and only if x 2 C(fx; yg),
so x is �weakly preferred�to y (according to our candidate preference relation) if it is chosen from
the set containing x and y only. We will stretch this de�nition somewhat by saying that x D x,
as x is de�nitionally chosen from the set fxg.

2. Show that D is a complete preference relation. So we have de�ned a binary relation. Great.
However, our theorem demands that choices be rationalized by a complete preference relation
- i.e. a complete, transitive, re�exive binary relation. We next need to show that D has these
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properties. Re�exivity is easy - in fact we de�ned D explicitly so that it is re�exive. Completeness
is also relatively straightforward. By de�nition, C(fx; yg) is either fxg, fyg or fx; yg. Thus, by
the construction of D either x D y, y D x or both. Finally, we need to show transitivity, which
we will do by contradiction. Imagine there exists x; y; z 2 X such that x D y D z but not x D z.
This implies

x 2 C(fx; yg)
y 2 C(fy; zg)
x =2 C(fx; zg)

This in turn implies that z 2 C(fx; zg). We can now show that we must have a violation of
either property � or property �. Consider the set fx; y; zg. If x 2 C(fx; y; zg), then the fact
that x =2 C(fx; zg) is a direct violation of property �. If y 2 C(fx; y; zg), then by property �,
y 2 C(fx; yg) = fx; yg. Property � then implies that x 2 C(fx; y; zg), which we have already
shown leads to a violation of �. If z 2 C(fx; y; zg), then by � z 2 C(fy; zg) = fy; zg, and so
by � y 2 C(fx; y; zg). Again, we have already shown that this leads to a violation. However, as
C(fx; y; zg) is nonempty, one of these cases must occur, and so a failure of transitivity implies a
failure of either � or �:

3. Show that D rationalizes C. We now need to show that, for all sets, our DM chooses as if
they are maximizing D. In other words, for some arbitrary A 2 2X=? we need to show that
C(A) = fx 2 Ajx D y 8 y 2 Ag. As we are proving the equality of two sets, this in itself takes
two stages:

(a) C(A) � fx 2 Ajx D y 8 y 2 Ag. Say x 2 C(A). Take any y 2 A. We need to show that
x D y - in other words that x 2 C(fx; yg). However, this follows directly from property �.
Thus, anything that is chosen from A must be �weakly preferred�to everything else in A.

(b) C(A) � fx 2 Ajx D y 8 y 2 Ag. Say x D y 8 y 2 A. Then, x 2 C(fx; yg) for all
y 2 A. Now C(A) must be non-empty, so either x 2 C(A) (in which case we are done),
or y 2 C(A) for y 6= x. By property �, this implies that fx; yg = C(fx; yg), and so by
property �, x 2 C(A).

This shows that properties � and � are su¢ cient for rationalizability
Proof (representation implies axioms). Homework

3.2 Example

Prove whether or not the following making decision procedures result in choices that satisfy � and �.

The DM has two utility rankings u and v over X, and a threshold v�. In any choice set, they
identify a� as the element that maximizes u and b� as the element that maximizes v. If v(a�) > v�

then they choose a�, otherwise they choose b�. (Can you think up a story for this procedure?)

[(a)-�] Assume that x 2 B � A, and x 2 C(A). We want to show that: x 2 C(B).

In this case this decision procedure does not satisfy this property.
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Counterexample Let�s consider A = x; y; z and B = x; y such that u(z) > u(y) > u(x),
v(z) < v� < v(y), and v(x) > v(y). Then C(A) = x but C(B) = y
:

[(b)-�] Let�s assume that x; y 2 C(A), A � B and y 2 C(B). We want to show that: x 2 C(B).

In this case this decision procedure does not satisfy this property.

Counterexample. Let A � fx; yg and B � fx; y; zg, such that u(x) = u(y) = 2; u(z) = 3 and
v(x) = 2; v(y) = 4 and v(z) = 1, with v� = 2.

We have that:

fx; yg = argmaxa2Au(a)

v(x) = 2 > v� = 2

v(y) = 4 > v� = 2,

Therefore x; y 2 C(A). [1]

On the other hand we have that:

z = argmaxa2Bu(a),

but v(z) = 1 < 2 = v� and y = argmaxb2Bv(b)

Therefore y 2 C(B). [2]

From [1] and [2] and the fact that as they were de�ned A � B, property � would tell us that
x 2 C(B), but since by assumption v(y) > v(x) we have that x =2 C(B):

What this DM is doing is basically to valuate a set of objects in terms of two di¤erent criteria.
In that way he/she ranks the alternatives according to these two di¤erent rankings, given by functions
u and v. At �rst, this DM only cares about the ranking that results from function u, that is, his/her
priority is to choose whatever is best given u. But, he/she also cares about v in the sense that he/she
prefers to choose an alternative that is at least as good as (in utility terms given by v) v�. If it is not
the case, then he/she decides taking into account the ranking given by v.
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