A Representation Theorem for Utility Maximization

Mark Dean

G4840 - Behavioral Economics
A Representation Theorem

- When dealing with models that have latent (or unobservable) variables we will want to find a representation theorem.

- This consists of three things:
 - A data set
 - A model
 - A set of conditions on the data which are necessary and sufficient for it to be consistent with the model.

- Means testing these conditions is the same as testing the model itself.
We are now going to develop a representation theorem for the model of utility maximization. We want to do so properly, so we are going to have to use some notation. Don’t worry - we are just formalizing the ideas from before!
• The data we are going to use are the choices people make

• Notation:
 - X: Set of objects you might get to choose from
 - 2^X: The power set of X (i.e. all the subsets of X)
 - \emptyset: The empty set

• Our data is going to take the form of a choice correspondence which tells us what the person chose from each subset of X

Definition
A choice correspondence C is a mapping $C : 2^X / \emptyset \rightarrow 2^X / \emptyset$ such that $C(A) \subset A$ for all $A \in 2^X / \emptyset$.
• Don’t panic! This is just a way of recording what we described previously
• For example, if we offered someone the choice of Jaffa Cakes and Kit Kats, and they chose Jaffa Cakes, we would write

\[C(\{\text{kitkat}, \text{jaffacakes}\}) = \{\text{jaffacakes}\} \]

• \(C \) is just a record of the choices made from all possible choice sets
 • i.e. all sets in \(2^X \) apart from the empty set \(\emptyset \)
• We insist that the DM chooses something that was actually in the data set
 • i.e. \(C(A) \subset A \)
• Note that there is something a bit weird going on
• We allow for people to choose more than one option!
• i.e. we allow for data of the form

\[C(\{kitkat, jaffacakes, lays\}) = \{jaffacakes, kitkat\} \]

• Which we interpret as something like “the decision maker would be happy with either jaffa cakes or lays from this choice set”
• This is very useful, but a bit dubious
 • We will come back to it later
The model we want to test is that of utility maximization

i.e. there exists a utility function $u : X \rightarrow \mathbb{R}$

Such that the things that are chosen are those which maximize utility

For every A

$$C(A) = \text{arg max}_{x \in A} u(x)$$

If this is true, we say that u rationalizes C

If C can be rationalized by some u then we say it has a utility representation
We want to know when data is consistent with utility maximization

- i.e. it has a utility representation

So we would like to find a set of conditions on C such that it has a utility representation if and only if these conditions are satisfied

- Testing these conditions is then the same as testing the model of utility maximization
You may remember a condition called the Weak Axiom of Revealed Preference from Intermediate Micro.

We will break WARP down into two parts:

Axiom \(\alpha \) (AKA Independence of Irrelevant Alternatives) If \(x \in B \subseteq A \) and \(x \in C(A) \), then \(x \in C(B) \)

Axiom \(\beta \) If \(x, y \in C(A) \), \(A \subseteq B \) and \(y \in C(B) \) then \(x \in C(B) \)

Notice we can test these conditions!

If we have data, we can see if they are satisfied.
These conditions form the basis of our first representation theorem.

Theorem

A Choice Correspondence has a utility representation if and only if it satisfies axioms \(\alpha \) and \(\beta \)

- **if**: if \(\alpha \) and \(\beta \) are satisfied then a utility representation exists
- **only if**: if a utility representation exists then \(\alpha \) and \(\beta \) are satisfied
• Because it is useful (and good for you) we are going to prove this (!)

• In order to do so, we are going to have to introduce another model based on **preferences**
 • Again, should be familiar from Intermediate Micro

• Reminder: A preference relation \succeq is a way of comparing alternatives
 • If x is ‘as good as’ y we write $x \succeq y$
 • We write $x \succ y$ if $x \succeq y$ but not $y \succeq x$
 • We write $x \sim y$ if $\succeq y$ and $\succeq x$
• We demand that preferences have certain properties:

 • Completeness: for every x and y in X either $x \succeq y$ or $y \succeq x$ (or both)
 • Transitivity: if $x \succeq y$ and $y \succeq z$ then $x \succeq z$
 • Reflexive: $x \succeq x$

• We say that preference relation \succeq represents a choice function C if, for every A

$$C(A) = \{ x \in A | x \succeq y \text{ for all } y \in A \}$$

• i.e. the things that are chosen are those that are preferred to everything else in the choice set
• Preferences are all well and good, but we were interested in the model of utility maximization!

• How can we relate the two?

• We say that a utility function u represents preferences \succeq if

\[
\begin{align*}
 u(x) &\geq u(y) \text{ if and only if } \\
 x &\succeq y
\end{align*}
\]
So if we can find

- A preference relation which represents choices
- A utility function which represents preferences

we are done!

Preferences represents choices means

$$C(A) = \{x \in A | x \succeq y \text{ for all } y \in A\}$$

Utility represents preferences means

$$u(x) \geq u(y) \iff x \succeq y$$

So

$$C(A) = \{x \in A | u(x) \geq u(y) \text{ for all } y \in A\} = \arg \max_{x \in A} u(x)$$
Thus, in order to prove that axioms α and β are equivalent to utility maximization we will do the following:

1. Show that if the data satisfies α and β then we can find a complete, transitive, reflexive preference relation \succeq which represents the data.

2. Show that if the preferences are complete, transitive and reflexive then we can find a utility function u which represents them.

3. Show that if the data has a utility representation then it must satisfy α and β.

- We will do 1 and 2 in class. You can do 3 for homework.
Our job is to show that, if choices satisfy α and β then we can find a preference relation \succeq which is

- Complete, transitive and reflexive
- Represents choices

Theorem

A Choice Correspondence can be represented by a complete, transitive, reflexive preference relation if satisfies axioms α and $\beta
How should we proceed?

1. Choose a candidate binary relation \succ
2. Show that it is complete, transitive and reflexive
3. Show that it represents choice
• If we observed choices, what do we think might tell us that x is preferred to y?
• How about if x is chosen when the only option is y?
• Let’s try that!
• We will **define** \triangleright as saying

 $$x \triangleright y \text{ if } x \in C(x, y)$$

• Okay, great, we have defined \triangleright
• But we need it to have the right properties
Is \supset complete?
Yes!
For any set $\{x, y\}$ either x or y must be chosen (or both)
In the former case $x \supset y$
In the latter $y \supset x$
• Is \sqsupseteq reflexive?

• Yes! (though we have been a bit cheeky)

• Let $x = y$, so then $C(x, x) = C(x) = x$

• Implies $x \sqsupseteq x$
Is \triangleright transitive?

Yes! (though this requires a little proving)

Assume not, then

$$x \triangleright y, \quad y \triangleright z$$

but not $x \triangleright z$

We need to show that this cannot happen

i.e. it violates α or β

These are conditions on the data, so what do we need to do?

Understand what this means for the data
• Translating to the data
 • $x \gg y$ means that $x \in C(x, y)$
 • $y \gg z$ means that $y \in C(y, z)$
 • not $x \gg z$ means that $x \notin C(x, z)$

• Claim: such data cannot be consistent with α and β

• Why not?
• What would the person choose from \{x, y, z\}

• x?

 • No! Violation of \(\alpha\) as x not chosen from \{x, z\}

• y?

 • No! This would imply (by \(\alpha\)) that \(y \in C(x, y)\)
 • By \(\beta\) this means that \(x \in C(x, y, z)\)
 • Already shown that this can’t happen

• z?

 • No! This would imply (by \(\alpha\)) that \(z \in C(y, z)\)
 • By \(\beta\) this means that \(y \in C(x, y, z)\)
 • Already shown that this can’t happen
Transitivity

- If we have $x \triangleright y$, $y \triangleright z$ but not $x \triangleright z$ then the data cannot satisfy α and β
- Thus if α and β are satisfied, we know that \triangleright must be transitive!
- Thus, we can conclude that, if α and β are satisfied \triangleright must have all three right properties!
Finally, we need to show that \triangleright represents choices - i.e.

$$C(A) = \{x \in A | x \triangleright y \text{ for all } y \in A\}$$

How do we do this?

Well, first note that we are trying to show that two sets are equal

- The set of things that are chosen
- The set of things that are best according to \triangleright

We do this by showing two things

1. That if x is in $C(A)$ it must also be $x \triangleright y$ for all $y \in A$
2. That if $x \triangleright y$ for all $y \in A$ then x is in $C(A)$
• Say that $x \in C(A)$
• For \triangleright to represent choices it must be that $x \triangleright y$ for every $y \in A$
• Note that, if $y \in A$, $\{x, y\} \subset A$
• So by α if

\[
x \in C(A) \\
\Rightarrow x \in C(x, y)
\]

• And so, by definition

\[
x \triangleright y
\]
Things that are Preferred must be Chosen

- Say that $x \in A$ and $x \triangleright y$ for every $y \in A$
- Can it be that $x \notin C(A)$
- No! Take any $y \in C(A)$
- By α, $y \in C(x, y)$
- As $x \triangleright y$ it must be the case that $x \in C(x, y)$
- So, by β, $x \in C(A)$
- Contradiction!
Q.E.D.
• Well, unfortunately we are not really done
• We wanted to test the model of **utility maximization**
• So far we have shown that α and β are equivalent to preference maximization
• Need to show that preference maximization is the same as utility maximization

Theorem

If a preference relation \succeq is complete, transitive and reflexive then there exists a utility function $u : X \to \mathbb{R}$ which represents \succeq, i.e.

$$ u(x) \geq u(y) \iff x \succeq y $$
I am going to sketch the proof because you might find it interesting.

However, I won’t ask you to reproduce this on an exam, so you can relax if you so wish.
Proof By Induction

- We are going to proceed using **proof by induction**
 - We want to show that our statement is true regardless of the size of X
 - We do this using induction on the size of the set
 - Let $n = |X|$, the size of the set

- Induction works in two stages
 - Show that the statement is true if $n = 1$
 - Show that, if it is true for n, it must also be true for any $n + 1$

- This allows us to conclude that it is true for n
 - It is true for $n = 1$
 - If it is true for $n = 1$ it is true for $n = 2$
 - If it is true for $n = 2$, it is true for $n = 3$....

- You have to be a bit careful with proof by induction
 - Or you can prove that all the horses in the world are the same color
So in this case we have to show that we can find a utility representation if $|X| = 1$

- Trivial

And show that if a utility representation exists for $|X| = n$, then it exists for $|X| = n + 1$

- Not trivial
• Take a set such that $|X| = n + 1$ and a complete, transitive reflexive preference relation \succeq

• Remove some $x^* \in X$

• Note that the new set X/x^* has size n

• So, by the inductive assumption, there exists some $\nu : X/x^* \rightarrow \mathbb{R}$ such that

\[
\nu(x) \geq \nu(y) \iff x \succeq y
\]

• So now all we need to do is assign a utility number to x^* which makes it work with ν

• How would you do this?
• Four possibilities

1. $x^* \sim y$ for some $y \in X/x^*$
 - Set $\nu(x^*) = \nu(y)$

2. $x^* \succeq y$ for all $y \in X/x^*$
 - Set $\nu(x^*) = \max_{y \in X/x^*} \nu(y) + 1$

3. $x^* \preceq y$ for all $y \in X/x^*$
 - Set $\nu(x^*) = \min_{y \in X/x^*} \nu(y) - 1$

4. None of the above
What do we do in case 4?

We divide X in two: those objects better than x^* and those worse than x^*

$$X_* = \{ y \in X / x^* | x^* \preceq x \}$$

$$X^* = \{ y \in X / x^* | x \succeq x^* \}$$

Figure out the highest utility in X_* and the lowest utility in X^* and fit the utility of x^* in between them

$$v(x^*) = \frac{1}{2} \min_{y \in X_*} v(y) + \frac{1}{2} \max_{y \in X_*} v(y)$$
• Note that everything in X^* has higher utility than everything in X^*
 • Pick an $x \in X^*$ and $y \in X^*$
 • $x \succeq x^*$ and $x^* \succeq y$
 • Implies $x \succeq y$ (why?)
 • and so $v(x) \geq v(y)$
 • In fact, because we have ruled out indifference $v(x) > v(y)$

• This implies that

$$v(x) > v(x^*) > v(y)$$

• And so
 • The utility of everything better than x^* is higher than $v(x^*)$
 • The utility of everything worse than x^* is lower than $v(x^*)$
- Verify that \(\nu \) represents \(\succeq \) in all of the four cases
- That sounds exhausting
- You can look in the lecture notes if you so wish
Q.E.D.
The final step is to show that, if a choice correspondence has a utility representation then it satisfies α and β

This closes the loop and shows that all the statements are equivalent

- A choice correspondence satisfies α and β
- A choice correspondence has a preference relation
- A choice correspondence has a utility representation

Will leave you to do that for homework!
• We have now achieved our aim!
• We know how to test the model of utility maximization

Theorem

A *Choice Correspondence has a utility representation* if and only if it satisfies axioms α and β

• We just test α and β
• Before we move on to something more fun, I want to discuss two potential issues
 • How seriously should we take utility?
 • What happens if our data is not as good as we would like it to be?
How Unique is Our Utility Function?

- We now know that if α and β are satisfied, we can find some utility function that will explain choices.
- Is it the only one?
How Unique is Our Utility Function?

<table>
<thead>
<tr>
<th>Croft’s Choices</th>
<th>Available Snacks</th>
<th>Chosen Snack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jaffa Cakes, Kit Kat</td>
<td>Jaffa Cakes</td>
</tr>
<tr>
<td></td>
<td>Kit Kat, Lays</td>
<td>Kit Kat</td>
</tr>
<tr>
<td></td>
<td>Lays, Jaffa Cakes</td>
<td>Jaffa Cakes</td>
</tr>
<tr>
<td></td>
<td>Kit Kat, Jaffa Cakes, Lays</td>
<td>Jaffa Cakes</td>
</tr>
</tbody>
</table>

- These choices could be explained by $u(J) = 3$, $u(K) = 2$, $u(L) = 1$
- What about $u(J) = 100000$, $u(K) = -1$, $u(L) = -2$?
- Or $u(J) = 1$, $u(K) = 0.9999$, $u(L) = 0.998$?
How Unique is Our Utility Function?

- In fact, if a data set obeys α and β there will be many utility functions which will rationalize the data.

Theorem

Let $u : X \to \mathbb{R}$ be a utility representation for a Choice Correspondence C. Then $v : X \to \mathbb{R}$ will also represent C if and only if there is a strictly increasing function T such that

$$v(x) = T(u(x)) \ \forall \ x \in X$$

- Strictly increasing function means that if you plug in a bigger number you get a bigger number out.
How Unique is Our Utility Function?

<table>
<thead>
<tr>
<th>Snack</th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaffa Cake</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Kit Kat</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Lays</td>
<td>1</td>
<td>-100</td>
<td>3</td>
</tr>
</tbody>
</table>

- v is a strictly increasing transform on u, and so represents the same choices.
- w is not, and so doesn’t.
 - For example think of the choice set $\{k, l\}$
 - u says they should choose kit cat
 - w says they should choose lays
Why Does This Matter?

• It is important that we know how much the data can tell us about utility
 • Or other model objects we may come up with
• For example, our results tell us that there is a point in designing a test to tell whether people maximize utility
• But there is no point in designing a test to see whether the utility of Kit Kats is twice that of Lays
 • Assuming \(\alpha \) and \(\beta \) is satisfied, we can always find a utility function for which this is true
 • And another one for which this is false!
• We can use choices to help us determine that the utility of Kit Kats is higher than the utility of Lays
• But nothing in our data tells us how much higher is the utility of Kit Kats
• Imagine running an experiment to try and test α and β
• The data that we need is the choice correspondence

\[C : 2^X / \emptyset \rightarrow 2^X / \emptyset \]

• How many choices would we have to observe?
• Lets say $|X| = 10$
 • Need to observe choices from every $A \in 2^X / \emptyset$
 • How big is the power set of X?
 • If $|X| = 10$ need to observe 1024 choices
 • If $|X| = 20$ need to observe 1048576 choices

• This is not going to work!
• So how about we forget about the requirement that we observe choices from all choice sets
• Are α and β still enough to guarantee a utility representation?

\[
\begin{align*}
C(\{x, y\}) &= x \\
C(\{y, z\}) &= y \\
C(\{x, z\}) &= z
\end{align*}
\]

• If this is our only data then there is no violation of α or β
• But no utility representation exists!
• We need a different approach!
Revealed Preference

- We say that x is **directly revealed preferred to** y if, for some choice set A

 \[
 y \in A \\
 x \in C(A)
 \]

- We say that x is **revealed preferred to** y if we can find a set of alternatives $w_1, w_2, ..., w_n$ such that
 - x is directly revealed preferred to w_1
 - w_1 is directly revealed preferred to w_2
 - ...
 - w_{n-1} is directly revealed preferred to w_n
 - w_n is directly revealed preferred to y

- We say x is **strictly revealed preferred to** y if, for some choice set A

 \[
 y \in A \textbf{ but not } y \in C(A) \\
 x \in C(A)
 \]
The Generalized Axiom of Revealed Preference

- Note that we can observe revealed preference and strict revealed preference from the data
- With these definitions we can write an axiom to replace α and β

Definition
A choice correspondence C satisfies the Generalized Axiom of Revealed Preference (GARP) if it is never the case that x is revealed preferred to y, and y is strictly revealed preferred to x

Theorem
A choice correspondence C satisfies GARP if and only if it has a utility representation. This is true even if C is incomplete (i.e. does not report choices from all choice sets)
Another weird thing about our data is that we assumed we could observe a choice *correspondence*

This is not an easy thing to do!

What about if we only get to observe a choice function?

How do we deal with indifference?
Choice Correspondence?

- One of the things we could do is assume that the decision maker chooses **one of** the best options

\[C(A) \in \arg \max_{x \in A} u(x) \]

- Is this going to work?
- No!
- Any data set can be represented by this model
 - Why?
 - We can just assume that all alternatives have the same utility!
- Need some way of identifying when an alternative \(x \) is **better than** alternative \(y \)
 - i.e. some way to identify strict preference
One case in which we can do this is if our data comes from people choosing consumption bundles from budget sets.

- Should be familiar from intermediate micro.

The objects that the DM has to choose between are bundles of different commodities:

\[x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \]

- And they can choose any bundle which satisfies their budget constraint:

\[\left\{ x \in \mathbb{R}_+^n \mid \sum_{i=1}^{n} p_i x_i \leq l \right\} \]
Budget constraint is $p_1 x_1 + p_2 x_2 = l$.
• Claim: We can use choice from budget sets to identify strict preference
 • Even if we only see a single bundle chosen from each budget set
 • As long as we assume more is better

\[
x_n \geq y_n \text{ for all } n \text{ and } x_n \succ y_n \text{ for some } n
\]

implies that \(x \succ y \)

• i.e. preferences are strictly monotonic
Monotonicity

Everything in this quadrant better than x

X

X_1

X_2
Claim: if p^x is the prices at which the bundle x was chosen

\[p^x x > p^x y \] implies $x \succ y$

Why?
Because x was chosen, we know $x \preceq y$

Because $p^x x > p^x y$ we know that y was inside the budget set when x was chosen

Could it be that $y \preceq x$?
Because y is inside the budget set, there is a z which is better than y \textbf{and} affordable when x was chosen

- Implies that $x \preceq z$ and (by monotonicity) $z \succ y$
- By transitivity $x \succ y$
• When dealing with choice from budget sets we say

 • \(x \) is **directly revealed preferred to** \(y \) if \(p^x x \geq p^x y \)

 • \(x \) is **revealed preferred to** \(y \) if we can find a set of alternatives \(w_1, w_2, \ldots, w_n \) such that

 • \(x \) is directly revealed preferred to \(w_1 \)

 • \(w_1 \) is directly revealed preferred to \(w_2 \)

 • ...

 • \(w_{n-1} \) is directly revealed preferred to \(w_n \)

 • \(w_n \) is directly revealed preferred to \(y \)

 • \(x \) is **strictly revealed preferred to** \(y \) if \(p^x x > p^x y \)
Theorem (Afriat)

Let \(\{x^1, \ldots, x^l\} \) be a set of chosen commodity bundles at prices \(\{p^1, \ldots, p^l\} \). The following statements are equivalent:

1. The data set can be rationalized by a strictly monotonic set of preferences \(\succeq \) that can be represented by a utility function
2. The data set satisfies GARP
3. There exists a continuous, concave, piecewise linear, strictly monotonic utility function \(u \) that rationalizes the data
We have completed our review of what is sometimes called 'revealed preference theory'.

- Phew

- Here are the takeaways
Testing models which have unobserved (latent) variables is tricky

- For example the model of utility maximization

The gold standard is a ‘representation theorem’

- Conditions on the data which are equivalent to testing the model
- Don’t have to make any specific assumptions about the nature of utility

In the case of utility maximization, we have such conditions

- α and β

These work if we can observe choice correspondences from every choice set

- Otherwise we need to use GARP

The utility numbers we find are not unique

- Only tell us ordering, not magnitudes