Utility Maximization

Mark Dean Spring 2015 Brown University

The Data

- We observe:
 - The choices someone makes
 - What they were choosing from
- Example: choices from different sets of snack foods

Available Snacks	Chosen Snack
Jaffa Cakes, Kit Kat	Jaffa Cakes
Kit Kat, Lays	Kit Kat
Lays, Jaffa Cakes	Jaffa Cakes
Kit Kat, Jaffa Cakes, Lays	Jaffa Cakes

The Model

- We want to test the model of utility maximization
- Every object has a fixed utility value attached to it
- For example:
 - U(jaffa cakes)=10
 - U(kit kat) =5
 - U(lays)=2
- In any choice set, choose the object with highest utility

The Question

- Is our data set consistent with the model of utility maximization?
- Problem: Our model contains 'unobservables'
 - We do not observe utilities
 - Kit Kats do not come with utility numbers stamped on them
 - Model says that people maximize utility, but as the experimenter I do not observe utility
- How can we proceed?

Approach 1

- Pick a particular utility function
 - e.g. utility=calories
- Test whether this utility function can explain the data
 - e.g. Do people pick the option with the most calories?
- This is now a testable prediction
- Problem: What does failure tell us?
 - Perhaps people do not maximize utility
 - Or perhaps utility is not equal to calories

Approach 2

- Ask the question: Is there ANY utility function that can explain the data?
- i.e. we are agnostic about what utility is
- We require only that the person has some consistent utility function that they are using to make their choices

Algenon's Choices

Choice	Available Snacks	Chosen Snack
1	Jaffa Cakes, Kit Kat	Jaffa Cakes
2	Kit Kat, Lays	Kit Kat
3	Lays, Jaffa Cakes	Lays
4	Kit Kat, Jaffa Cakes, Lays	Jaffa Cakes

- Is there any utility function that can explain Algenon's choices
- No!
 - Choice 1 implies u(jaffa cake)>u(kit kat)
 - Choice 2 implies u(kit kat)>u(lays)
 - Choice 3 implies u(lays)>u(jaffa cakes)
- Implies u(jaffa cake)>u(jaffa cake): Contradiction

Brittney's Choices

Choice	Available Snacks	Chosen Snack
1	Jaffa Cakes, Kit Kat	Jaffa Cakes
2	Kit Kat, Lays	Kit Kat
3	Lays, Jaffa Cakes	Jaffa Cakes
4	Kit Kat, Jaffa Cakes, Lays	Kit Kat

- What about Brittney's Choices?
- No!
 - Choice 1 implies u(jaffa cake)>u(kit kat)
 - Choice 4 implies u(kit kat)>u(jaffa cakes)
- Contradiction

Colvin's Choices

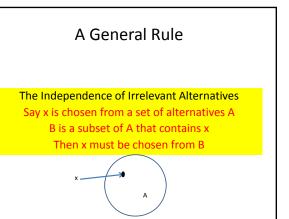
Choice	Available Snacks	Chosen Snack
1	Jaffa Cakes, Kit Kat	Jaffa Cakes
2	Kit Kat, Lays	Kit Kat
3	Lays, Jaffa Cakes	Jaffa Cakes
4	Kit Kat, Jaffa Cakes, Lays	Jaffa Cakes

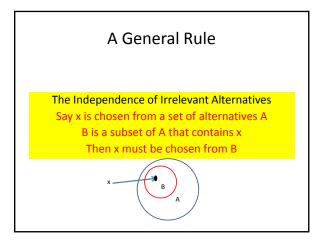
- How about Colvin's Choices?
- Yes!
 - u(jaffa cakes)>u(kit kat)>u(lays)
- Eg
 - u(jaffa cakes)=3
 - u(kit kat)=2
 - U(lays)=1

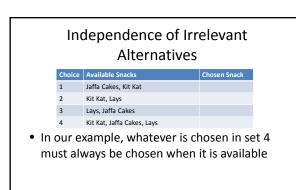
A General Rule

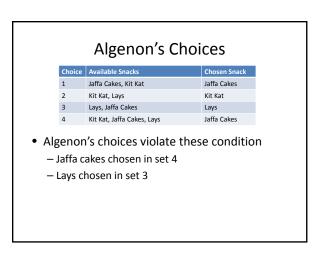
 Question: Is there a general rule that differentiates data sets that can be explained by some utility function from those that can't?

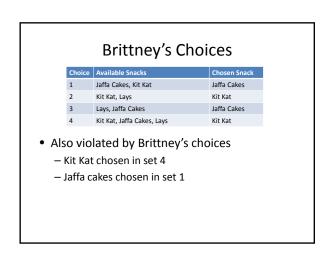
A General Rule


 Question: Is there a general rule that differentiates data sets that can be explained by some utility function from those that can't?


The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B


A General Rule


The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B



Choice	Available Snacks	Chosen Snack
1	Jaffa Cakes, Kit Kat	Jaffa Cakes
2	Kit Kat, Lays	Kit Kat
3	Lays, Jaffa Cakes	Jaffa Cakes
4	Kit Kat, Jaffa Cakes, Lays	Jaffa Cakes
affa c	choices satisfy IIA cakes chosen in 4 hosen in 3 and 1	

A Necessary Condition

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B

- If we observe a utility maximizer, then they must satisfy IIA
 - If x is chosen from A, must have a higher utility than anything in A
 - B is a subset of A
 - X must have higher utility than anything in B
 - Should be chosen from B

A Sufficient Condition?

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B

• Is it the case that, if IIA holds, there exists some utility function such that choices maximize utility according to that utility function?