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The Indirect Utility Function

e Imagine that the consumer can choose to live in two different
countries

e In country 1 they would face prices p! and have income wl
e In country 2 they would face prices p? and have income w?

e Which country would they prefer to live in?
e i.e. what are there preferences over budget sets?

e which we can denote by =*



The Indirect Utility Function

e Here is one possibility
o Figure out one of the best items in budget set 1 (i.e.
x(pt, wh))
e Figure out one of the best items in budget set 2 (i.e.
x(p?, w?))
e The consumer prefers budget set 1 to budget set 2 if the
former is preferred to the latter

e i.e. we can define >="on the set of budget sets by

(pl,Xl) - *(p2,X2)
if and only if x! > x2
for x* € x(p',x') and x* € x(p* x?)

e Can you think of reasons why this might not be the right
model?
e Temptation
o Uncertainty
o Regret



The Indirect Utility Function

e If > can be represented by a utility function we can define the
indirect utility function
v(p.w) = u(x(p,w))

e v now represents the preferences >~*on the space of budget
sets

e Proof?



Properties of the Indirect Utility Function

e Property 1:

v(ap,aw) = v(p,w) for & >0

e Follows from the fact that x(ap, aw) = x(p, w)

e Property 2: v(p, w) is non increasing in p and increasing in
w

e Assuming non satiation



Properties of the Indirect Utility Function

e Property 3: v is quasiconvex: i.e. the set

{(p,w)|v(p,w) < v}

is convex for all v
e Proof left as an exercise
e Property 4: If >~ is continuous then >* is continuous

e Follows from the Theorem of the Maximum



The Story of The Turtle

e From Ariel Rubinstein

e The furthest a turtle can travel in 1 day is 1 km
e The shortest length of time it takes for a turtle to travel 1km
is 1 day

e No, we didn't know what he was on about either

e But bear with me...



The Story of The Turtle

e |s this always true?
e No! Requires two assumptions

@ The turtle can travel a strictly positive distance in any positive
period of time
@ The turtle cannot jump a positive distance in zero time

e So much for zoology, what has this got to do with economics?



Expenditure Minimization

e |t is going to be very useful to define Expenditure
minimization problem

e This is the dual of the utility maximization problem

e Prime problem (utility maximization)

choose x € ]Rﬁ

in order to maximize u(x)
N
subject to Z pixi < w
i=1

e Dual problem (cost minimization)

choose x € ]R"X
N
in order to minimize Zp,-x,-
i=1
subject to u(x) > @



Expenditure Minimization

Are these problems ‘the same'?
In general, no

o Like the teleporting turtle

However, if we rule out teleportation (and laziness) then they
will be the same.

What assumptions allow us to do that?



Duality

Theorem

If u is monotonic and continuous then x* is a solution to the prime
problem with prices p and wealth w it is a solution to the dual
problem with prices p and utility v(p, w)



Duality

Proof.

e Assume not, then there exists a bundle x such that
u(x) > v(p,w) = u(x¥)
with

ZPV‘G < ZP/X,-* =w

e But this means, by monotonicity, that there exists an ¢ > 0
such that, for

X1+ €

Xy + €

XN+ €

Zp;x,-/ <w



Duality

Proof.

e By monotonicity, we know that u(x’") > u(x) > u(x*), and so

x* is not a solution to the prime problem

O



Duality

Theorem

If u is monotonic and continuous then x* is a solution to the dual
problem with prices p and utility u* it is a solution to the prime
problem with prices p and wealth }_ p;x;



Proof.

e Assume not, then there exists a bundle X such that

ZP/Z’ < ZP;X,-*
with
u(x) > u(x*) > u*
e By continuity, there exists an € > 0 such that, for all
x' € B(x,€), u(x") > u(x*)

Duality

O



Duality

Proof.
e In particular, there is an ¢ > 0 such that
X1 — €
o Xo — €
Xy — €

and u(x") > u(x*) > u*
e But }_pix/ < Y pix; <Y pix*, so x* is not a solution to the

prime problem.
O]



Hicksian Demand and the Expenditure Function

e The dual problem allows us to define two new objects

e The Hicksian demand function

h(p, = argmin i X
(p, u) gmin Y pixi
subject to u(x) > &
e This is the demand for each good when prices are p and the

consumer must achieve utility u
e Note difference from Walrasian demand

e The expenditure function

e(p,u) = )r;nei)rgZp;x,'

subject to u(x) > @

e This is the amount of money necessary to achieve utility u
when prices are p



Properties of the Hicksian Demand Function

e Assume that we are dealing with continuous, non-satiated
preferences

e Fact 1: his homogenous of degree zero in prices - i.e.
h(ap, u) = h(p, u) for a >0

e Follows from the fact that increasing all prices by a does not
change the tangency conditions
e i.e. the slope of the 'budget line’ remains the same

e Fact 2: No excess utility - i.e. u(h(p,u)) =u

e Follows from continuity (why?)



Properties of the Hicksian Demand Function

e Fact 3: If preferences are convex then h is a convex set. If
preferences are strictly convex then h is unique

e Proof: say that x and y are both in h(p, u). Then

ZP/X,' = Zpiy/' = e(p,v)

e Implies that for any « € (0,1) and z = ax+ (1 —a)y

Y pizi = Y pilaxi+(1—a)y)
= a) pixi+(1—a)) pyi
— e(pu)
e Also, as preferences are convex, z =~ x, and so
u(z) > u(x)=u
o If preferences are strictly convex, then z > x
o But, by continuity, exists ¢ > 0 such that z’ > x all
7z € B(x,¢)
e Implies that there is a z’ such that u(z’) > u and
Ypizi < X piX



Properties of the Expenditure Function

Again, assume that we are dealing with continuous,
non-satiated preferences

Fact 1: e(ap, u) = we(p, u)
e Follows from the fact that h(ap, u) = h(p, u)
Fact 2: e is strictly increasing in u and non-decreasing in p

e Strictly increasing due to continuity and non-satiation
e Only non-decreasing because may already be buying 0 of some
good

Fact 3: e is continuous in p and u

e Logic follows from the theorem of the maximum (though can't
be applied directly)



Properties of the Expenditure Function

Fact 4: e is concave in p

e Proof: fix a ii. we need to show that
e(p”, ) > we(p, ) + (1 —a)e(p’, o)
where
P = ap+ (1 706)p/
o Let X" € h(p”, @), then

el w) = Ypl

Y (api+ (1= a)pj) x/

a) pixi +(1—a))_ pix’
a) pixi+(1—a)) pixi

ae(p, @) + (1 —a)e'(p, o)

AV ||

where x € h(p,0) and x’ € h(p', &)



Properties of the Expenditure Function

e This is quite an important and intuitive property

e Implies that if we look at how expenditure changes as a
function of one price it looks like this ...



Properties of the Expenditure Function

€3

ey ‘/

S

P1 p2 p

e Think of a price increase from p; to p»

o If the consumer couldn’t change their allocation then
expenditure would go from e; to e3

e This is an upper bound on the true increase in expenditure.



Comparative Statics

e We will now put the above machinery to work to learn about
the relationship between the various measures we have
introduced

e This will also allow us to say something about the
comparative statics of these functions - for example how
demand changes with price

e Before doing so, it will be worth reviewing a very useful
mathematical result

e The Envelope Theorem
e See Mas-Colell section M.L



The Envelope Theorem

e Consider a constrained optimization problem

choose x
in order to maximize f(x : q)
subject to
g(x : g =0

gn(x @ q)=0

e Where g are some parameters of the problem (for example
prices)



The Envelope Theorem

e Assume the problem is well behaved, and let

e x(q) be (a) solution to the problem if the parameters are q
* v(q) = f(x(q) : q)
o Key question: how does v alter with g

e i.e. how does the value that can be achieved vary with the
parameters?



The Envelope Theorem

Say that both x and g are single valued
And say that there are no constraints

Chain rule gives
dv._ df  Jf dx

3g g " axaq

But note that if we are at a maximum

of
-0
ox
e and so
ov _of
dg  dq

Only the direct effect of the change in parameters
matters



The Envelope Theorem

e This result generalizes

Theorem (The Envelope Theorem)
In the above decision problem

dv(g) _ 9f(x(q):q) 9gn(x(q) : q)
dq dq B ZA” dq

n

where A, is the Lagrange multiplier on the nth constraint



Hicksian Demand and The Expenditure Function

e We can now apply the envelope theorem to get some

interesting results relating the various functions that we have
defined

e First, the relationship between the expenditure function and
Hicksian demand

Theorem (Shephard’s Lemma)

Say preferences are continuous, locally non satiated and strictly
convex then
de(p, u)

hi(p,u) = 3



Hicksian Demand and The Expenditure Function

Proof.
EMP is

N
min Z piXi
i=1
subject to u(x) > wu

Applying the envelope theorem directly gives the result O



Hicksian Demand and The Expenditure Function

Corollary
Assume h is continuously differentiable, and let

dhy . dhy
9p1 9pum
Dyh(p, u) = :
ohy ... dhm
9p1 apm



Hicksian Demand and The Expenditure Function

Proof.

@ Follows directly from previous claim
@® Follows from (1) and the fact that e is concave

©® Follows from (1) and the fact that matrices of second
derivatives are symmetric

O Follows from the homogeneity of degree zero of h, so
h(ap, u) — h(p,u) =0

Differentiating with respect to « gives the desired result



Walrasian Demand and The Indirect Utility Function

Theorem (Roy's Identity )

Say preferences are continuous, locally non satiated and strictly
convex then

av(p.w)
]
X/(P, W) == av(;’,lw)
ow
Proof.
Applying the envelope theorem tells us that
ov(p, w)
AR ,
) — —Axi(p,w)
also
e ov(p, w)
ow



Walrasian and Hicksian Demand

e Perhaps more usefully we can relate Hicksian and Walrasian
Demand

Theorem (The Slusky Equation)

Let preferences be continuous, strictly convex and locally
non-satiated and u = v(p, w)

oh;(p, u) _ ax(p, w) n ax(p, w)
9px APk ow

Xk (Pu, w)



Walrasian and Hicksian Demand

Proof.
By duality, we know

hi(p,u) = x(p, e(p, u))
Differentiating both sides with respect to py gives

oh;(p, u) _ ax;(p, w) n ax;(p, w) de(p, u)
9Pk 9pk ow 9Pk

but we know that

de(p, u)
Ipk

= hi(p, u) = x(p, e(p, u)) = x(p, w)



Walrasian and Hicksian Demand

Why is this useful?
Define the Slutsky Matrix by

_oxi(p.w) | oxi(p,w)
Stk = s +— xk(p, w)

The above theorem tells us that

S = Dph(p, u)

And so S must be negatively semi definite, symmetric and

Sp=0

Also note that S is observable (if you know the demand

function)

It turns out this result is if and only if: Demand is

rationalizable if and only if the resulting Slutsky Matrix has

the above properties



Walrasian and Hicksian Demand

e It also helps us understand how demand changes as respond
to own prices.

e \We now need one more theorem



Law of Compensated Demand

Theorem (The Law of Compensated Demand)

Assume preferences are continuous, locally non satiated and
strictly convex, then for any p’, p”

(p" = p")(h(p" u) = h(p',u) <O

Proof.

As h minimizes expenditure we have

P”h<PH, u) < p”h(p/, u)

and
p/h(p”, U) Z p/h(p/, U)

Subtracting the two inequalities gives the result O



Law of Compensated Demand

An immediate corollary is that the compensated price
elasticity of demand is non positive

e An increase in the price of good / reduces the Hicksian
demand for good /

Back to the Slutsky equation we | = k we have

ohi(p,u)  ax(p,w) _ox(p,w)
oo ow T,

Does have to be negative?
e No! Giffen Goods
But this can only happen if the income effect

9x;(p,w)
ap;

Overwhelms the substitution effect

ah,(p, u)
ap
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