Microeconomic Analysis

Mark Dean

Homework 2

Due Wednesday 27th September

Question 1 Some quetions about preferences

1. Consider the revealed preference relation R and strictly revealed preferred relation S generated by a choice correspondence C observed on some subset of possible choice sets $D \subset 2^X / \emptyset$ from a finite set X. Use a result from class to show that if C satisfies GARP there exists a utility function $u : X \to \mathbb{R}$ that represents revealed preferences in the sense that

$$\begin{array}{rcl} xRy & \to & u(x) \geq u(y) \\ \\ xSy & \to & u(x) > u(y) \end{array}$$

2. As part of the proof, you will have used the fact that a reflexive, transitive (but not necessarily complete) binary relation \succeq has a utility representation in the sense that

$$\begin{array}{rrrr} x &\succeq & y \to u(x) \geq u(y) \\ \\ x &\succ & y \to u(x) > u(y) \end{array}$$

This representation is worse than the standard one, in that we cannot uniquely recover preferences from the utility function. Show that (i) If we know that \succeq is complete then there is a unique preference ordering associated with any utility representation. but (ii) if we do not know that \succeq is complete then there will be many preference orderings associated with a given utility function 3. Does this matter for choices? i.e. If we are told the utility function u that represents the revealed preference information from C defined on $D \subset 2^X / \emptyset$, can we uniquely recover the choices that must have been made in each $A \in D$?

Question 2 Prove the following lemma which we stated in class

Lemma 1 Let x^j and x^k be two commodity bundles such that $p^j x^k < p^j x^j$. If the DM's choices can be rationalized by a complete locally non-satiated preference relation, then it must be the case that $x^j \succ x^k$

Question 3 Some questions on continuity

- 1. We used the following definition of continuity of preferences on some metric space X: for any $x, y \in X$ such that $x \succ y$, there exists an $\varepsilon > 0$ such that, for any $x' \in B(x, \varepsilon)$ and $y' \in B(y, \varepsilon), x' \succ y'$. Show that this is equivalent to the assumption that the set $\{(x, y) | x \succeq y\} \subset X \times X$ is closed
- 2. Consider the lexicographic preferences we introduced in class. Let the distance between $(a,b) \in X$ and $(c,d) \in X$ be given by $max \{|a-c|, |b-d|\}$. Are the lexicographic preferences continuous under this metric?
- Show that if the preferences ≽ can be represented by a continuous utility function they are continuous.