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Introduction

• Up until now, we have thought of subjects choosing between
objects

• Used cars
• Hamburgers
• Monetary amounts

• However, often the outcome of the choices that we make are
not known

• You are deciding whether or not to buy a share in AIG
• You are deciding whether or not to put your student loan on
black at the roulette table

• You are deciding whether or not to buy a house that straddles
the San Andreas fault line

• In each case you understand what it is that you are choosing
between, but you don’t know the outcome of that choice

• In fact, many things can happen, you just don’t know which
one



Risk vs Uncertainty

• We are going to differentiate between two different ways in
which the future may not be know

• Horse races
• Roulette wheels

• What is the difference?



Risk vs Uncertainty

• When playing a roulette wheel the probabilities are known
• Everyone agrees on the likelihood of black
• So we (the researcher) can treat this as something we can
observe

• Probabilities are objective
• This is a situation of risk



Risk vs Uncertainty

• When betting on a horse race the probabilities are unknown
• Different people may apply different probabilities to a horse
winning

• We cannot directly observe a person’s beliefs
• Probabilities are subjective
• This is a situation of uncertainty (or ambiguity)



Choices Under Risk

• So, how should you make choices under risk?
• Let’s consider the following (very boring) fairground game

• You flip a coin
• If it comes down heads you get $10
• If it comes down tails you get $0

• What is the maximum amount x that you would pay in order
to play this game?



Approach 1: Expected Value

• You have the following two options
1 Not play the game and get $0 for sure
2 Play the game and get −$x with probability 50% and $10− x
with probability 50%

• Approach 1: Expected value
• The expected amount that you would earn from playing the
game is

0.5(−x) + 0.5(10− x)
• This is bigger than 0 if

0.5(−x) + 0.5(10− x) ≥ 0

5 ≥ x

• Should pay at most $5 to play the game



The St. Petersburg Paradox

• This was basically the accepted approach until Daniel
Bernoulli suggested the following modification of the game

• Flip a coin
• If it comes down heads you get $2
• If tails, flip again
• If that coin comes down heads you get $4
• If tails, flip again
• If that comes down heads, you get $8
• Otherwise flip again
• and so on

• How much would you pay to play this game?



The St. Petersburg Paradox

• The expected value is

1
2

$2+
1
4

$4+
1
8

$8+
1
16

$16+ ...

= $1+ $1+ $1+ $1+ ......
= ∞

• So you should pay an infinite amount of money to play this
game

• Which is why this is the St. Petersburg paradox



The St. Petersburg Paradox

• So what is going wrong here?
• Consider the following example:

Example
Say a pauper finds a magic lottery ticket, that has a 50% chance
of $1 million and a 50% chance of nothing. A rich person offers to
buy the ticket off him for $499,999 for sure. According to our
‘expected value’method’, the pauper should refuse the rich
person’s offer!



The St. Petersburg Paradox

• It seems ridiculous (and irrational) that the pauper would
reject the offer

• Why?
• Because the difference in life outcomes between $0 and
$499,999 is massive

• Get to eat, buy clothes, etc

• Whereas the difference between $499,999 and $1,000,000 is
relatively small

• A third pair of silk pyjamas

• Thus, by keeping the lottery, the pauper risks losing an awful
lot ($0 vs $499,999) against gaining relatively little ($499,999
vs $1,000,000)



Marginal Utility

• Bernoulli argued that people should be maximizing expected
utility not expected value
• u(x) is the expected utility of an amount x

• Moreover, marginal utility should be decreasing
• The value of an additional dollar gets lower the more money
you have

• For example

u($0) = 0

u($499, 999) = 10

u($1, 000, 000) = 16



Marginal Utility

• Under this scheme, the pauper should choose the rich person’s
offer as long as

1
2
u($1, 000, 000) +

1
2
u($0) < u($499, 999)

• Using the numbers on the previous slide, LHS=8, RHS=10
• Pauper should accept the rich persons offer

• Bernoulli suggested u(x) = ln(x)
• Also explains the St. Petersberg paradox
• Using this utility function, should pay about $64 to play the
game



Risk Aversion

• Notice that if people
• Maximize expected utility
• Have decreasing marginal utility (i.e. utility is concave)

• They will be risk averse
• Will always reject a lottery in favor of receiving its expected
value for sure



Risk Aversion



Expected Utility

• Expected Utility Theory is the workhorse model of choice
under risk

• Unfortunately, it is another model which has something
unobservable

• The utility of every possible outcome of a lottery

• So we have to figure out how to test it
• We have already gone through this process for the model of
’standard’(i.e. not expected) utility maximization

• Is this enough for expected utility maximization?



Data

• In order to answer this question we need to state what our
data is

• We are going to take as our primitve preferences �
• Not choices
• But we know how to go from choices to preferences, yes?

• But preferences over what?
• In the beginning we had preferences over ‘objects’
• For temptation and self control we used ’menus’
• Now ‘lotteries’!



Lotteries

• What is a lottery?
• Like any lottery ticket, it gives you a probability of winning a
number of prizes

• Let’s imagine there are four possible prizes
• a(pple), b(anana), c(elery), d(ragonfruit)

• Then a lottery is just a probability distribution over those
prizes 

0.15
0.35
0.5
0


• This is a lottery that gives 15% chance of winning a, 35%
chance of winning b, 50% of winning c and 0% chance of
winning d



Lotteries

• More generally, a lottery is any

p =


pa
pb
pc
pd


• Such that

• px ≥ 0
• ∑x px = 1

Definition
Let X be some finite prize space, The set ∆(X ) of lotteries on X is
the set of all functions p : X → [0, 1] such that

∑
x∈X

p(x) = 1



Expected Utility

• We say that preferences � have an expected utility
representation if we can
• Find utilities on prizes
• i.e. u(a), u(b), u(c), u(d)

• Such that
p � q if and only if

pau(a) + pbu(b) + pcu(c) + pdu(d)

> qau(a) + qbu(b) + qcu(c) + qdu(d)

• i.e ∑x pxu(x) ≥ ∑x qxu(x)



Expected Utility

Definition
A preference relation � on lotteries on some finite prize space X
have an expected utility representation if there exists a function
u : X → R such that

p � q if and only if

∑
x∈X

p(x)u(x) ≥ ∑
x∈X

q(x)u(x)

• Notice that preferences are on ∆(X ) but utility numbers are
on X



Expected Utility

• What needs to be true about preferences for us to be able to
find an expected utility representation?

• Hint: you know a partial answer to this

• An expected utility representation is still a utility
representation

• So preferences must be
• Complete
• Transitive
• Reflexive



Expected Utility

• Unsurprisingly, this is not enough
• We need two further axioms

1 The Independence Axiom
2 The Archimedian Axiom



The Independence Axiom

Question: Think of two different lotteries, p and q. Just for
concreteness, let’s say that p is a 25% chance of
winning the apple and a 75% chance of winning the
banana, while q is a 75% chance of winning the
apple and a 25% chance of winning the banana. Say
you prefer the lottery p to the lottery q. Now I offer
you the following choice between option 1 and 2

1 I flip a coin. If it comes up heads, then you get
p. Otherwise you get the lottery that gives you
the celery for sure

2 I flip a coin. If it comes up heads, you get q.
Otherwise you get the lottery that gives you the
celery for sure

Which do you prefer?



The Independence Axiom

• The independence axiom says that if you must prefer p to q
you must prefer option 1 to option 2
• If I prefer p to q, I must prefer a mixture of p with another
lottery to q with another lottery

The Independence Axiom Say a consumer prefers lottery p to
lottery q. Then, for any other lottery r and number
0 < α ≤ 1 they must prefer

αp + (1− α)r

to
αq + (1− α)r

• Notice that, while the independence axiom may seem intutive,
that is dependent on the setting
• Maybe you prefer ice cream to gravy, but you don’t prefer ice
cream mixed with steak to gravy mixed with steak



The Archimedean Axiom

• The other axiom we need is more techincal

• It basically says that no lottery is infinitely good or infinitely
bad

The Archimedean Axiom For all lotteries p, q and r such that
p � q � r , there must exist an a and b in (0, 1) such
that

ap + (1− a)r � q � bp + (1− b)r



The Expected Utility Theorem

• It turns out that these two axioms, when added to the
‘standard’ones, are necessary and suffi cient for an expected
utility representation

Theorem
Let X be a finite set of prizes , ∆(X ) be the set of lotteries on X .
Let � be a binary relation on ∆(X ). Then � is complete,
reflexive, transitive and satisfies the Independence and
Archimedean axioms if and only if there exists a u : X → R such
that, for any p, q ∈ ∆(X ),

p � q

if and only if ∑
x∈X

pxu(x) ≥ ∑
x∈X

qxu(x)



The Expected Utility Theorem

• Proof?
• Do you want us to go through the proof?
• Oh, alright then
• Actually, Necessity is easy

• You will do it for homework

• Suffi ciency is harder
• Will sketch it here



Proof

• Key to the proof is the following lemma

Lemma If � is complete, reflexive, transitive and satisfies the
Independence and Archimedean axioms then

1 p � q and 0 ≤ α < β ≤ 1 implies

βp + (1− β)q � αp + (1− α)q

2 p � q � r and p � r implies that there exists a
unique α∗ such that

q ∼ α∗p + (1− α)r ∗



The Expected Utility Theorem

• Step 1
• Find the best prize - in other words the prize such that getting
that prize for sure is preferred to all other lotteries. Give that
prize utility 1 (for convenience, let’s say that a is the best prize)

• Step 2
• Find the worst prize - in other words the prize such that all
lotteries are preferred to getting that prize for sure. Give that
prize utility 0 (for convenience, let’s say that d is the worse
prize)

• Step 3
• Show that, if a > b, then

aδa + (1− a)δd � bδa + (1− b)δd

where δx is the lottery that gives prize x for sure (this is
intuitively obvious, but needs to be proved from the
independence axiom)



The Expected Utility Theorem

• Step 4
• For other prizes (e.g. b), find the probability λ such that the
consumer is indifferent between getting apples with probability
λ and dragonfruit with probability (1− λ), and bananas for
sure. Let u(b) = λ. i.e.

0
1
0
0

 ∼ u(b)

1
0
0
0

+ (1− u(b))

0
0
0
1


(for us to know such a λ exists requires the Archimedean
axiom)

• Step 5
• Do the same for c , so

0
0
1
0

 ∼ u(c)

1
0
0
0

+ (1− u(c))

0
0
0
1





The Expected Utility Theorem

• So now we have found utility numbers for every prize
• All we have to do is show that p � q if and only if

∑x∈X pxu(x) ≥ ∑x∈X qxu(x)

• Let’s do a simple example

p =


0
0.25
0.75
0

 , q =


0
0.75
0.25
0





The Expected Utility Theorem

• First, notice that

p =


0
0.25
0.75
0

 = 0.25


0
1
0
0

+ 0.75

0
0
1
0


• But



The Expected Utility Theorem

• But 
0
1
0
0

 ∼ u(b)

1
0
0
0

+ (1− u(b))

0
0
0
1


and 

0
0
1
0

 ∼ u(c)

1
0
0
0

+ (1− u(c))

0
0
0
1





The Expected Utility Theorem

p ∼ 0.25

u(b)

1
0
0
0

+ (1− u(b))

0
0
0
1




+0.75

u(c)

1
0
0
0

+ (1− u(c))

0
0
0
1






The Expected Utility Theorem

= (0.25u(b) + 0.75u(c))


1
0
0
0

+

(1− 0.25u(b)− 0.75u(c))


0
0
0
1





The Expected Utility Theorem

• So p is indifferent to a lottery that puts probability

(0.25u(b) + 0.75u(c))

on the best prize (and the remainder on the worst prize)

• But this is just the expected utility of p
• Similarly q is indfferent to a lottery that puts

(0.75u(b) + 0.25u(c))

on the best prize

• But this is just the expected utility of q



The Expected Utility Theorem

• So p will be preferred to q if the expected utility of p is higher
than the expected utility of q

• This is because this means that p is indifferent to a lottery
which puts a higher weight on the best prize than does q

• QED (ish)



Expected Utility Numbers

• Remember that when we talked about ’standard’utility
theory, the numbers themselves didn’t mean very much

• Only the order mattered
• So, for example

u(a) = 1 v(a) = 1

u(b) = 2 v(b) = 4

u(c) = 3 v(c) = 9

u(d) = 4 v(c) = 16

• Would represent the same preferences



Expected Utility Numbers

• Is the same true here?
• No!
• According to the first preferences

1
2
u(a) +

1
2
u(c) = 2 = u(b)

and so
1
2
a+

1
2
c ∼ b

• But according to the second set of utilities

1
2
v(a) +

1
2
v(c) = 5 > v(b)

and so
1
2
a+

1
2
c � b



Expected Utility Numbers

• So we have to take utility numbers more seriously here
• Magnitudes matter

• How much more seriously?

Theorem
Let � be a set of preferences on ∆(X ) and u : X → R form an
expected utility representation of �. Then v : X → R also forms
an expected utility representation of � if and only if

v(x) = au(x) + b ∀ x ∈ X

for some a ∈ R++, b ∈ R

Proof.
Homework



Risk Aversion

• We motivated the move from expected value maximization to
expected utility maximization on the basis of risk aversion

• Does EU imply risk aversion?
• No!
• Consider someone who has u(x) = x

• They will be risk neutral

• Consider someone who has u(x) = x2

• They will be risk loving

• So risk attitude has something to do with the shape of the
utility function



Risk Aversion

• For this section we will think about lotteries with monetary
prizes

• Let δx be the lottery that gives prize x for sure and E (p) be
the expected value of a lottery p

Definition
We say that a decision maker is risk averse if, for every lottery p

δE (p) � p

We say they are risk neutral if

δE (p) ∼ p

We say they are risk loving if

δE (p) � p



Risk Aversion

• We can say the same thing a different way

Definition
The certainty equivalence of a lottery p is the amount c such
that

δc ∼ p
The risk premium is

E (p)− c



Risk Aversion

Lemma
For a decision maker whose preferences are strictly monotonic in
money

1 They are risk averse if and only if for any p the risk premium
is weakly positive

2 They are risk neurtal if and only if for any p the risk premium
is zero

3 They are risk loving if and only if for any p the risk premium
is weakly negative



Risk Aversion and Utility Curvature

• We have made the claim that there is a link between risk
aversion and the curvature of the utility function



Risk Aversion and Utility Curvature

• We can make this statement tight

Theorem
An expected utility maximizer

1 Is risk averse if and only if u is concave

2 Is risk neutral if and only if u is linear

3 Is risk loving if and only if u is convex

Proof.
Comes straight from Jensen’s inequality: for a random variable x
and a concave function u

E (u(x)) ≤ u(E (x))



Measuring Risk Aversion

• We might want a way of measuring risk aversion from the
utility function

• Intuitively, the more ‘curvy’the utility function, the more risk
averse

• How do we measure curvature?
• The second derivative u′′(x)!
• Is this a good measure?
• No, because we can change the utility function in such a way
that we don’t change the underlying preferences, and change
u′′(x)



The Arrow Pratt Measure

• One way round this problem is to use the Arrow-Pratt
measure of absolute risk aversion

A(x) =
−u′′(x)
u′(x)

• This measure has some nice properties
1 If two utility functions represent the same preferences then
they have the same A for every x

2 It measures risk aversion in the sense that the following two
statements are equivalent

• The utility function u has a higher Arrow Pratt measure than
utility function v for every x

• Utility function u gives a higher risk premium than utility
function v for every p



The Arrow Pratt Measure

• Why is it called a measure of absolute risk aversion?
• To see this, let’s think of a function for which A(x) is constant

u(x) = 1− e−ax

• Note u′(x) = ae−ax and u′′(x) = −a2e−ax so A(x) = a
• This is a constant absolute risk aversion (CARA) utility
function



The Arrow Pratt Measure

• Claim: for CARA utility functions, adding a constant amount
to each lottery doesn’t change risk attitues

• i.e if δx � p then δx+z is preferred to a lottery p′ which adds
an amount z to each prize in p

• To see this note that

u(x) ≥ ∑
y
p(y)u(y)

1− e−ax ≥ ∑
y
p(y)

(
1− e−ay

)
⇒ 1− e−ax ≥ 1−∑

y
p(y)e−ay

e−az − e−axe−az ≥ e−az −∑
y
p(y)e−ay e−az

⇒ 1− e−a(x+z ) ≥∑
y
p(y)

(
1− e−a(y+z )

)
⇒ u(x + z) ≥∑

y
p(y)u(y + z)



Relative Risk Aversion

• Is this a sensible property?
• Maybe not
• Means that you should have the same attitude to a gamble
between winning $100 or losing $75 whether you are a student
earning $20,000 a year or a professor earning millions!

• Perhaps a more useful measure is relative risk aversion

R(x) = xA(x) = −xu
′′(x)
u′(x)



Relative Risk Aversion

• An example of a Constant Relative Risk Aversion measure is

u(x) =
x1−ρ − 1
1− ρ

• Note that u′(x) = x−ρ, u′′(x) = −ρx−ρ−1 and so R(x) = ρ

• CRRA utility functions have the property that proportional
changes in prizes don’t affect risk attitudes

• i.e if δx � p then δαx is preferred to a lottery p′ which
multiplies each prize in p by α > 0



Relative Risk Aversion

• To see this note that

u(x) ≥ ∑
y
p(y)u(y)

⇒ x1−ρ − 1
1− ρ

≥ ∑y p(y)y
1−ρ − 1

1− ρ

⇒ x1−ρ ≥∑
y
p(y)y1−ρ

⇒ α1−ρx1−ρ ≥∑
y
p(y)α1−ρy1−ρ

⇒ (αx)1−ρ − 1
1− ρ

≥ ∑y p(y) (αy)
1−ρ − 1

1− ρ

u(αx) ≥ ∑
y
p′(y)u(y)



Are People Expected Utility Maximizers?

• Because of the work we have done above, we know what the
‘behavioral signature’is of EU

• The independence axiom

• Essentially this is picking up on the fact that EU demands
preferences to be linear in probabilities

• Does this hold in experimental data?



The Common Ratio Effect

• What would you choose?
• Many people choose C1 and D2



The Common Ratio Effect



The Common Ratio Effect

• This is a violation of the independence axiom
• Why?
• Because

D1 = 0.25C1+ 0.75R

D2 = 0.25C2+ 0.75R

where R is the lottery which pays 0 for sure

• Thus independence means that

C1 � C2⇒ D1 � D2



The Common Consequence Effect

• What would you choose?
• Many people choose A1 and B2



The Common Consequence Effect



Explanations

• What do you think is going on?
• Many alternative models have been proposed in the literature

• Disappointment: Gul, Faruk, 1991. "A Theory of
Disappointment Aversion,"

• Salience: Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer,
2012. "Salience Theory of Choice Under Risk,"

• One of the most widespread and straightforward is probability
weighting



Probability Weighting

• Maybe the problem that the Allais paradox highlights is that
people do not ’believe’the probabilities that are told to them

• For example they treat a 1% probability of winning $0 as if it
is more likely than that

• ‘I am unlucky, so the bad outcome is more likely to happen to
me’

• The difference between 0% and 1% seems bigger than the
difference between 89% and 90%

• This is the idea behind the probability weighting model.



Simple Probability Weighting Model

• Approach 1: Simple probability weighting
• Let’s start with expected utility

U(p) = ∑
x∈X

p(x)u(x)

• And allow for probability weighting

V (p) = ∑
x∈X

π(p(x))u(x)

Where π is the probability weighting function

• This can explain the Allais paradox
• For example if π(0.01) = 0.05



Simple Probability Weighting Model

• However, the simple probability weighting model is not popular
• For two reasons

1 It leads to violations of stochastic dominance
2 It doesn’t really capture the idea of ‘pessimism’



Pessimism

• Think back to the Allais paradox 0
1
0

 �
 0.01
0.89
0.1


• It seems as if the 1% probability of $0 is being overweighted

• Is this just because it is a 1% probability?

• Or is it because it is a 1% probability of the worst prize
• If it is the latter, this is something that the simple probability
weighting model cannot capture

• Weights are only based on probability



Pessimism

• Consider the following two examples

Example
Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
winning $5

Example
Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
losing $1000

• Would you ‘weigh’the 2% probability the same in each case?

• Arguably not
• If you were pessimistic then you might think that 2% is ‘more
likely’in the latter case than in the former

• Can’t be captured by the simple probability weighting model



Rank Dependent Utility

• Because of these two concerns, the simple probability
weighting model is rarely used

• Instead people tend to use rank dependent utility
(sometimes also called cumulative probability weighting)

• Probability weighting depends on
• The probability of a prize
• Its rank in the lottery - i.e. how many prizes are better or
worse than it

• In practice this is done by applying weights cumulatively
• Here comes the definition

• It looks scary, but don’t panic!



Rank Dependent Utility

Definition
A decision maker’s preferences � over ∆(X ) can be represented by
a rank dependant utility model if there exists a utility function
u : X → R and a cumulative probability weighting function
ψ : [0, 1]→ [0, 1] such that ψ(0) = 0 and ψ(1) = 1, such that the
function U : ∆(X )→ R represents �, where U(p) is constructed
in the following way:

1 The prizes of p are ranked x1, x2, . . . , xn such that
x1 � x2 · · · � xn

2 U(p) is determined as

U(p) = ψ(p1)u(x1) +
n

∑
i=2

(
ψ

(
i

∑
j=1
pj

)
− ψ

(
i−1
∑
k=1

pk

))
u(xi )



Rank Dependent Utility

• Let’s go through an example: for prizes 10 > 5 > 0 let p be
equal to  0.1

0.7
0.2


• How do we apply RDU?



Rank Dependent Utility

• Well, first note that there are three prizes, so we can rewrite
the expression above as

U(p) = ψ(p1)u(x1)

+ (ψ (p1 + p2)− ψ (p1)) u(x2)

+ (ψ (p1 + p2 + p3)− ψ (p1 + p2)) u(x3)

• The weight attached to the best prize is the weight of p1
• The weight attached to the second best prize is the weight on
the probability of

• Getting something at least as good as the second prize
• Minus the probability of getting something better than the
second prize

• And so on

• Notice that if ψ is the identity function this is just expected
utility



Rank Dependent Utility

• In this specific case

U(p) = ψ(p1)u(x1)

+ (ψ (p1 + p2)− ψ (p1)) u(x2)

+ (ψ (p1 + p2 + p3)− ψ (p1 + p2)) u(x3)

• Becomes

U(p) = ψ(0.1)u(10)

+ (ψ (0.8)− ψ (0.1)) u(5)

+ (ψ (1)− ψ (0.8)) u(0)



Introduction

• In the first class we drew a distinction betweem
• Circumstances of Risk (roulette wheels)
• Circumstances of Uncertainty (horse races)

• So far we have been talking about roulette wheels
• Now horse races!



Risk vs Uncertainty

• Remember the key difference between the two
• Risk: Probabilities are observable

• There are 38 slots on a roulette wheel
• Someone who places a $10 bet on number 7 has a lottery with
pays out $350 with probability 1/38 and zero otherwise

• (Yes, this is not a fair bet)

• Uncertainty: Probabilities are not observable
• Say there are 3 horses in a race
• Someone who places a $10 bet on horse A does not necessarily
have a 1/3 chance of winning

• Maybe their horse only has three legs?



Subjective Expected Utility

• If we want to model situations of uncertainty, we cannot think
about preferences over lotteries

• Because we don’t know the probabilities
• We need a different set up
• We are going to thing about acts
• What is an act?



States of the World

• First we need to define states of the world
• We will do this with an example
• Consider a race between three horses

• A(rchibald)
• B(yron)
• C(umberbach)

• What are the possible oucomes of this race?
• Excluding ties



States of the World

State Ordering
1 A, B ,C
2 A, C, B
3 B, A, C
4 B, C, A
5 C, A, B
6 C, B, A



Acts

• This is what we mean by the states of the world
• An exclusive and exhaustive list of all the possible outcomes in
a scenario

• An act is then an action which is defined by the oucome it
gives in each state of the world

• Here are two examples
• Act f : A $10 even money bet that Archibald will win
• Act g : A $10 bet at odds of 2 to 1 that Cumberbach will win



Acts

State Ordering Payoff Act f Payoff Act g
1 A, B ,C $10 -$10
2 A, C, B $10 -$10
3 B, A, C -$10 -$10
4 B, C, A -$10 -$10
5 C, A, B -$10 $20
6 C, B, A -$10 $20



Subjective Expected Utility Theory

• So, how would you choose between acts f and g?
• SEU assumes the following:

1 Figure out the probability you would associate with each state
of the world

2 Figure out the utility you would gain from each prize

3 Figure out the expected utility of each act according to those
probabilities and utilities

4 Choose the act with the highest utility



Subjective Expected Utility Theory

• So, in the above example
• Utility from f :

[π(ABC ) + π(ACB)] u(10)

+ [π(BAC ) + π(BCA)] u(−10)
+ [π(CBA) + π(CAB)] u(−10)

where π is the probability of each act

• Utility from g :

[π(ABC ) + π(ACB)] u(−10)
+ [π(BAC ) + π(BCA)] u(−10)
+ [π(CBA) + π(CAB)] u(20)



Subjective Expected Utility Theory

• Assuming utility is linear f is preferred to g if

[π(ABC ) + π(ACB)]
[π(CBA) + π(CAB)]

≥ 3
2

• Or the probability of A winning is more than 3/2 times the
probability of C winning



Subjective Expected Utility Theory

Definition
Let X be a set of prizes, Ω be a (finite) set of states of the world
and F be the resulting set of acts (i.e. F is the set of all functions
f : Ω→ X ). We say that preferences � on the set of acts F has a
subjective expected utility representation if there exists a utility
function u : X → R and probability function π : Ω→ [0, 1] such
that ∑ω∈Ω π(ω) = 1 and

f � g

⇔ ∑
ω∈Ω

π(ω)u (f (ω)) ≥ ∑
ω∈Ω

π(ω)u (g(ω))



Subjective Expected Utility Theory

• Notes
• Notice that we now have two things to recover: Utility and
preferences

• Axioms beyond the scope of this course: has been done twice -
first by Savage1 and later (using a trick to make the process a
lot simpler) by Anscombe and Aumann2

• Utility pinned down to positive affi ne transform
• Probabilities are unique

1Savage, Leonard J. 1954. The Foundations of Statistics. New York, Wiley.
2Anscombe, F. J.; Aumann, R. J. A Definition of Subjective Probability.

The Annals of Mathematical Statistics 34 (1963), no. 1, .



The Ellsberg Paradox

• Unfortunately, while simple and intuitive, SEU theory has
some problems when it comes to describing behavior

• These problems are most elegantly demostrated by the
Ellsberg paradox

• This thought experiment has sparked a whole field of decision
theory



The Ellsberg Paradox - A Reminder

• Choice 1: The ’risky bag’
• Fill a bag with 20 red and 20 black tokens
• Offer your subject the opportunity to place a $10 bet on the
color of their choice

• Then elicit the amount x such that the subject is indifferent
between playing the gamble and receiving $x for sure.

• Choice 2: The ‘ambiguous bag’
• Repeat the above experiment, but provide the subject with no
information about the number of red and black tokens

• Then elicit the amount y such that the subject is indifferent
between playing the gamble and receiving $y for sure.



The Ellsberg Paradox

• Typical finding
• x >> y
• People much prefer to bet on the risky bag

• This behavior cannot be explained by SEU?
• Why?



The Ellsberg Paradox

• What is the utility of betting on the risky bag?
• The probability of drawing a red ball is the same as the
probability of drawing a black ball at 0.5

• So whichever act you choose to bet on, the utility of the
gamble is

0.5u($10)



The Ellsberg Paradox

• What is the utility of betting on the ambiguous bag?
• Here we need to apply SEU
• What are the states of the world?

• Red ball is drawn or black ball is drawn

• What are the acts?
• Bet on red or bet on black



The Ellsberg Paradox

State r b
red 10 0
black 0 10

• How do we calculate the utility of these two acts?
• Need to decide how likely each state is
• Assign probabilities π(r) = 1− π(b)
• Note that these do not have to be 50%
• Maybe you think I like red chips!



The Ellsberg Paradox

• Utility of betting on the red outcome is therefore

π(r)u($10)

• Utility of betting on the black outcome is

π(b)u($10) = (1− π(r))u($10)

• Because you get to choose which color to bet on, the gamble
on the ambiguous urn is

max {π(r)u($10), (1− π(r))u($10)}

• is equal to 0.5u($10) if π(r) = 0.5
• otherwise is greater than 0.5u($10)
• should always (weakly) prefer to bet on the ambiguous urn
• intuition: if you can choose what to bet on, 0.5 is the worst
probability



The Ellsberg Paradox

• 61% of my last class exhibited the Ellsberg paradox

• For more details see Halevy, Yoram. "Ellsberg revisited: An
experimental study." Econometrica 75.2 (2007): 503-536.



Maxmin Expected Utility

• So, as usual, we are left needing a new model to explain
behavior

• There have been many such attempts since the Ellsberg
paradox was first described

• We will focus on ’Maxmin Expected Utility’by Gilboa and
Schmeidler3

3Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with
non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2),
pages 141-153, April.



Maxmin Expected Utility

• Maxmin expected utility has a very natural interpretation....
• The world is out to get you!

• Imagine that in the Ellsberg experiment was run by an evil and
sneaky experimenter

• After you have chosen whether to bet on red or black, they will
increase your chances of losing

• They will sneak some chips into the bag of the opposite color
to the one you bet on

• So if you bet on red they will put black chips in and visa versa



Maxmin Expected Utility

• How should we think about this?
• Rather than their being a single probability distribution, there
is a range of possible distributions

• After you chose your act, you evaluate it using the worst of
these distributions

• This is maxmin expected utility
• you maximize the minimum utility that you can get across
different probability distributions

• Has links to robust control theory in engineering
• This is basically how you design aircraft



Maxmin Expected Utility

Definition
Let X be a set of prizes, Ω be a (finite) set of states of the world
and F be the resulting set of acts (i.e. F is the set of all functions
f : Ω→ X ). We say that preferences � on the set of acts F has a
Maxmin expected utility representation if there exists a utility
function u : X → R and convex set of probability functions Π and

f � g

⇔ min
π∈Π

∑
ω∈Ω

π(ω)u (f (ω)) ≥ min
π∈Π

∑
ω∈Ω

π(ω)u (g(ω))



Maxmin Expected Utility

• Maxmin expected utility can explain the Ellsberg paradox
• Assume that u(x) = x
• Assume that you think π(r) is between 0.25 and 0.75
• Utility of betting on the risky bag is 0.5u(x) = 5
• What is the utility of betting on red from the ambiguous bag?

min
π(r )∈[0.25,0.75]

π(r)u($10) = 0.25u($10) = 2.5

• Similary, the utility from betting on black is

min
π(r )∈[0.25,0.75]

(1− π(r)) u($10) = 0.25u($10) = 2.5

• Maximal utility from betting on the ambiguous bag is lower
than that from the risky bag
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