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Choice Correspondence?

Another weird thing about our data is that we assumed we
could observe a choice correspondence

e Multiple alternatives can be chosen in each choice problem
This is not an easy thing to do!
What about if we only get to observe a choice function?

e Only one option chosen in each choice problem

How do we deal with indifference?



Choice Correspondence?

One of the things we could do is assume that the decision
maker chooses one of the best options

C(A) € argmax u(x)

XEA
Is this going to work?
No!
Any data set can be represented by this model
° V\/hy7

e We can just assume that all alternatives have the same utility!



Choice Correspondence?

Another thing we can do is assume away indifference

C(A) = arg max u(x)

e for some one-to-one function u
Is this going to work?

Yes

e Implies that data is a function
e Property « (or GARP) will be necessary and sufficient (if X is
finite)
But maybe we don’t want to rule out indifference!

e Maybe people are sometimes indifferent!



Choice from Budget Sets

Need some way of identifying when an alternative x is better
than alternative y
e i.e. some way to identify strict preference

One case in which we can do this is if our data comes from
people choosing consumption bundles from budget sets

e Should be familiar from previous economics courses

The objects that the DM has to choose between are bundles
of different commodities

X1

Xn

And they can choose any bundle which satisfies their budget

constraint
n
{x € R | Zp,-x,- < I}
i=1



Choice from Budget Sets

Budget constraint is
P1X; + PaXy = 1.




Monotonicity

e Claim: We can use choice from budget sets to identify strict
preference

e Even if we only see a single bundle chosen from each budget
set

e As long as we assume something about how preferences work

e One example: More is better

X, > ypforall nand x, > y, for some n

implies that x > y

e i.e. preferences are strictly monotonic



@--------

Everything
in this
quadrant
better than x

Monotonicity



Monotonicity

e Claim: if p* is the prices at which the bundle x was chosen
p*x > p*Xy implies x > y

[ V\/hy7



Revealed Strictly Preferred

X

e Because x was chosen, we know x 7 y

e Because p*x > p*y we know that y was inside the budget
set when x was chosen

e Could it be that y 77 x7



Revealed Strictly Preferred

e Because y is inside the budget set, there is a z which is better
than y and affordable when x was chosen

e Implies that x 77 z and (by monotonicity) z > y
e By transitivity x > y



Revealed Strictly Preferred

e In fact we can make use of a weaker property than strict
monotonicity
Definition
We say preferences 7 are locally non-satiated on a metric space
X if, for every x € X and € > 0, there exists

y € B(x¢)
such that
y = X

Lemma

Let x) and x* be two commodity bundles such that p/x* < p/x. If
the DM'’s choices can be rationalized by a complete locally
non-satiated preference relation, then it must be the case that

x) = xk



Revealed Preference

e When dealing with choice from budget sets we say

e x is directly revealed preferred to y if p*x > p*y
e x is revealed preferred to y if we can find a set of
alternatives wy, wo, ....w, such that

x is directly revealed preferred to wy

wy is directly revealed preferred to w»

wp—_1 is directly revealed preferred to wy

[ ]
[ ]
[ ]
[ ]
® w, is directly revealed preferred to y

e x is strictly revealed preferred to y if p*x > p*y



Afriat’s Theorem

Theorem (Afriat)

Let {x',....x'} be a set of chosen commodity bundles at prices
{p'.....p'}. The following statements are equivalent:

@ The data set can be rationalized by a locally non-satiated set
of preferences > that can be represented by a utility function

@® The data set satisfies GARP (i.e. xRy implies not ySx)
/

© There exists positive {ui A } such that

i=1
v < NP (X=X Vi)

O There exists a continuous, concave, piecewise linear, strictly
monotonic utility function u that rationalizes the data



Things to note about Afriat’'s Theorem

e Compare statement 1 and statement 4

e The data set can be rationalized by a locally non-satiated set
of preferences > that can be represented by a utility function

e There exists a continuous, concave, piecewise linear, strictly
monotonic utility function v that rationalizes the data

e This tells us that there is no empirical content to the
assumptions that utility is
e Continuous

e Concave
e Piecewise linear

e If a data set can be rationalized by any locally non-satiated
set of preferences it can be rationalized by a utility function
which has these properties



Things to note about Afriat’'s Theorem

e What about statement 37

/
~_ such that

e There exists positive {ui, /\i} .
1=

U<+ MpI (X =) Y

e This says that the data is rationalizable if a certain linear
programming problem has a solution
e Easy to check computationally
o Less insight than GARP

e But there are some models which do not have an equivalent of
GARP but do have an equivalent of these conditions



Things to note about Afriat’'s Theorem

Where do these conditions come from?

Imagine that we knew that this problem was differentiable
max u(x) subject to ij)g <l
Jj

with u concave

FOC for every problem i and good j

du(x’) — ipi

o P

Implies . o
Vu(x") =A'p'

e where Vu is the gradient function and p' is the vector of prices



Things to note about Afriat’'s Theorem

e Recall (or learn), that for concave functions
u(x") < u(x) + Vu(x) (x" — x')

e i.e. function lies below the tangent

u(x") <u(x)+Mp(x' —x)



What if X is not Finite?

e So far we have assumed that the set of available alternatives
is finite

Theorem
A Choice Correspondence on a finite X has a utility representation
if and only if it satisfies axioms a and 3

e However, this may be limiting

e Choice from lotteries
e Choice from budget sets

e Can we drop the word ‘finite’ from the above theorem?



What if X is not Finite?

e Remember we proved the theorem in three steps

@ Show that if the data satisfies « and  then we can find a
complete, transitive, reflexive preference relation > which
represents the data

@® Show that if the preferences are complete, transitive and
reflexive then we can find a utility function u which represents
them

© Show that if the data has a utility representation then it must
satisfy « and

e If you go back and look carefully step 1 never made use of the
fact that X was finite

e However, in step 2 we did

e Proof by induction is only guaranteed to hold finitely



What if X is not Finite?

e Just because we made use of the fact that X was finite in
that particular proof doesn’t mean that it is necessary for the
statement to be true

e Maybe we will be lucky and the statement remains true for
arbitrary X....

e Sadly not



Infinity!

e Some definitions you should know
Definition
The natural, or counting numbers, denoted by IN, are the set of
numbers {1,2,3,......}
Definition
The integers, denoted by Z, are the set of numbers
{..-3,-2,-1,0,1,2,3,..}
Definition
The rational numbers, denoted by Q, are the set of numbers

Q:{%pez,beﬂ\r}

Definition
A set is countably infinite if there is a bijection between that set
and the natural numbers



Infinity!

e Here are some properties of Q and RR.

® Q is countable
® IR is uncountable

© For every a, b € R such that a < b, there exists a ¢ € Q such
a<c<b(ie QisdenseinR)



Lexicographic Preferences

Definition
Let > be a binary relation on R x {1,2} such that
{a,b} = {c d}iff
(ia >

or (i)a = cand b>d

C

You should check that you agree that > is a complete preference
relation.

Fact
There is no utility function that rationalizes > .



Lexicographic Preferences

e Proof:

e Assume that such a utility function exists

e Then, for every a € R it must be the case that
u(a,2) > u(a, 1)

e Moreover, for every b > a

u(b,1) > u(a,?2)

e Thus, every a € R generates an interval on the real line, and
these intervals are non-overlapping

e Each such interval includes a rational number

e Contradicts the remark that the rational numbers are
countable and the real numbers are not.



Utility Representation with Non-Finite X

So what can we do in order to ensure that preferences have a
utility representation?

First things first: how big is the problem?

The counter example above made use of the fact that X was
uncountablein

Does this mean the problem goes away if X is countably
finite?

It turns out the answer is yes



Utility Representation with Countable X

Theorem
If a relation > on a countable X is complete, transitive and

reflexive then there exists a utility function u: X — IR which
represents =, I.e.

ulx) > uly) = xry



Utility Representation with Countable X

e Proof:

o Let {x,} be an enumeration of X

o let xg =0

o Assign a utility number u to each x,11 as in the finite case, by
using the utility representation that worked for xi, ....x, and
then assigning a number that works for x,1

e This procedure assigns utility numbers to each x € X

e And we know that for any x;, the utility function represents
preferences between x, and x,, for m < n

e Now take x,y € X. WLOG x = xp,, y = xp for m < n

e We know that x = y <= x = xm <= u(xp) > u(xm)

e Why does this proof not work if X is uncountable?



Utility Representation with Uncountable X

e We know from the example of lexicographic preferences that

we cannot replace ‘countable’ with ‘any’ X in the previous
theorem

e In order to guarantee that we have a utility representation of a
preference relation on an uncountable X we need another
condition



Continuity

e One way to go is to insist that preferences are continuous
e Broadly speaking, this means that if we change the items a a
little bit the preferences also change only a little bit

e ie. they don't ‘jump’

Definition

We say that a preference relation > on a metric space X is
continuous if, for any x, y € X such that x > y, there exists an
€ > 0 such that, for any x’ € B(x,¢) and y’ € B(y,¢), x' =y’

e Examples of preferences that are not continuous?

o | like to drink a bottle of wine in the evenings. If | cannot drink
a full bottle then | would prefer not to drink
o Lexicographic preferences (see homework)



Continuity

e An alternative characterization of continuity:

Lemma
A preference relation > on a metric space X is continuous if and

only if the set {(x,y) |x = y} C X x X is closed

e i.e. Forany {x,, yn}o; such that x, > y, and
limy {xn, yn} = {x,y} implies x = y

e You will prove for homework that these two definitions are
equivalent



Debreu's Theorem

e One of the most famous theorems in mathematical social
sciences

Theorem (Debreu)

Let X be a separable metric space, and >~ be a complete
preference relation on X. If = is continuous, then it can be
represented by a continuous utility function.

e Proving this in all its glory is beyond us, so we are going to
prove something weaker

Theorem

Let X be a convex subset of R" and > be a complete preference
relation on X. If = is continuous, then it can be represented by a
utility function.



Debreu's Theorem

Lemma
If = is a continuous complete preference relation on a convex

subset of R" and x > y then there exists z € X such that
X=-z>Yy



Debreu's Theorem

e Proof: Assume not

Construct the following sequence inductively

Set xp = x and yp =0

At step n+ 1 assume that x, = x and y > yp

Take the point m between x,; and y,

It must be the case that either m = x or y = m (otherwise we
have x > m > y which we have ruled out by assumption)

In the former case set x,11 to m and y,11 to y,. In the latter
case, set xp+1 to x, and yp41 to m

This generates two sequences which converge to the same
point z

By continuity of preferences, as x, = x for every n it must be
zZr X

Similarly, as y >~ y, every n it must be that y >~ z

Implies by transitivity that y > x - contradiction



Debreu's Theorem

e We will need one more definition

Definition
A set Y is dense in the set X if, for every x € X and € > 0 there
exists y € Y in B(x,¢€)

Fact
R" has a countable dense subset (e.g. the members of R" where
each coordinate is rational)



Debreu's Theorem

e We can now prove our theorem

e Step 1: Let Y be a countable dense subset of X. We have

already shown that there exists a function v which represents
=onY.

e In fact, we can restrict this function to be between —1 and 1

e Step 2: Define u as follows. For any x € X
u(x) =sup{v(z)|z € Y and x > z}

e If no y exists such that x > y let u(x) = —1



Debreu's Theorem

e Step 3: We now need to show that u represents >=. We can
do that in two parts

e First note that if x ~ y then x > z if and only if y > z and so
u(x) = sup{v(z)|]z€ Y and x > z}
= sup{v(z)|[z€e Yandy > z}
= uly)
e Step 4: If x > y then, by previous lemma, there exists z
and z, such that x = z; >z > y

e By continuity this means that we can pick z3 and z4 € Y such
that x = z3 >z > y
e Thus

u(x)

ARV,
=
N
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