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Choice Correspondence?

• Another weird thing about our data is that we assumed we
could observe a choice correspondence
• Multiple alternatives can be chosen in each choice problem

• This is not an easy thing to do!
• What about if we only get to observe a choice function?

• Only one option chosen in each choice problem

• How do we deal with indifference?



Choice Correspondence?

• One of the things we could do is assume that the decision
maker chooses one of the best options

C (A) ∈ argmax
x∈A

u(x)

• Is this going to work?
• No!
• Any data set can be represented by this model

• Why?
• We can just assume that all alternatives have the same utility!



Choice Correspondence?

• Another thing we can do is assume away indifference

C (A) = argmax
x∈A

u(x)

• for some one-to-one function u

• Is this going to work?
• Yes

• Implies that data is a function
• Property α (or GARP) will be necessary and suffi cient (if X is
finite)

• But maybe we don’t want to rule out indifference!
• Maybe people are sometimes indifferent!



Choice from Budget Sets

• Need some way of identifying when an alternative x is better
than alternative y
• i.e. some way to identify strict preference

• One case in which we can do this is if our data comes from
people choosing consumption bundles from budget sets
• Should be familiar from previous economics courses

• The objects that the DM has to choose between are bundles
of different commodities

x =

x1...
xn


• And they can choose any bundle which satisfies their budget
constraint {

x ∈ Rn
+|

n

∑
i=1
pixi ≤ I

}



Choice from Budget Sets



Monotonicity

• Claim: We can use choice from budget sets to identify strict
preference

• Even if we only see a single bundle chosen from each budget
set

• As long as we assume something about how preferences work
• One example: More is better

xn ≥ yn for all n and xn > yn for some n

implies that x � y

• i.e. preferences are strictly monotonic



Monotonicity



Monotonicity

• Claim: if px is the prices at which the bundle x was chosen

pxx > pxy implies x � y

• Why?



Revealed Strictly Preferred

• Because x was chosen, we know x % y
• Because pxx > pxy we know that y was inside the budget
set when x was chosen

• Could it be that y % x?



Revealed Strictly Preferred

• Because y is inside the budget set, there is a z which is better
than y and affordable when x was chosen

• Implies that x % z and (by monotonicity) z � y
• By transitivity x � y



Revealed Strictly Preferred

• In fact we can make use of a weaker property than strict
monotonicity

Definition
We say preferences % are locally non-satiated on a metric space
X if, for every x ∈ X and ε > 0, there exists

y ∈ B(x , ε)

such that

y � x

Lemma
Let x j and xk be two commodity bundles such that pjxk < pjx j . If
the DM’s choices can be rationalized by a complete locally
non-satiated preference relation, then it must be the case that
x j � xk



Revealed Preference

• When dealing with choice from budget sets we say

• x is directly revealed preferred to y if px x ≥ px y
• x is revealed preferred to y if we can find a set of
alternatives w1, w2, ....wn such that

• x is directly revealed preferred to w1
• w1 is directly revealed preferred to w2
• ...
• wn−1 is directly revealed preferred to wn
• wn is directly revealed preferred to y

• x is strictly revealed preferred to y if px x > px y



Afriat’s Theorem

Theorem (Afriat)
Let {x1, .....x l} be a set of chosen commodity bundles at prices{
p1, ..., pl

}
. The following statements are equivalent:

1 The data set can be rationalized by a locally non-satiated set
of preferences � that can be represented by a utility function

2 The data set satisfies GARP (i.e. xRy implies not ySx)

3 There exists positive
{
ui ,λi

}l
i=1

such that

ui ≤ uj + λjpj (x i − x j ) ∀ i , j

4 There exists a continuous, concave, piecewise linear, strictly
monotonic utility function u that rationalizes the data



Things to note about Afriat’s Theorem

• Compare statement 1 and statement 4
• The data set can be rationalized by a locally non-satiated set
of preferences � that can be represented by a utility function

• There exists a continuous, concave, piecewise linear, strictly
monotonic utility function u that rationalizes the data

• This tells us that there is no empirical content to the
assumptions that utility is

• Continuous
• Concave
• Piecewise linear

• If a data set can be rationalized by any locally non-satiated
set of preferences it can be rationalized by a utility function
which has these properties



Things to note about Afriat’s Theorem

• What about statement 3?

• There exists positive
{
ui ,λi

}l
i=1

such that

ui ≤ uj + λjpj (x i − x j ) ∀ i , j

• This says that the data is rationalizable if a certain linear
programming problem has a solution

• Easy to check computationally
• Less insight than GARP
• But there are some models which do not have an equivalent of
GARP but do have an equivalent of these conditions



Things to note about Afriat’s Theorem

• Where do these conditions come from?
• Imagine that we knew that this problem was differentiable

max u(x) subject to ∑
j
pij xj ≤ I

with u concave

• FOC for every problem i and good j

∂u(x i )
∂x ij

= λipij

• Implies
∇u(x i ) = λipi

• where ∇u is the gradient function and pi is the vector of prices



Things to note about Afriat’s Theorem

• Recall (or learn), that for concave functions

u(x i ) ≤ u(x j ) +∇u(x j )(x i − x i )

• i.e. function lies below the tangent

• So
u(x i ) ≤ u(x j ) + λjpj (x i − x j )



What if X is not Finite?

• So far we have assumed that the set of available alternatives
is finite

Theorem
A Choice Correspondence on a finite X has a utility representation
if and only if it satisfies axioms α and β

• However, this may be limiting
• Choice from lotteries
• Choice from budget sets

• Can we drop the word ‘finite’from the above theorem?



What if X is not Finite?

• Remember we proved the theorem in three steps

1 Show that if the data satisfies α and β then we can find a
complete, transitive, reflexive preference relation � which
represents the data

2 Show that if the preferences are complete, transitive and
reflexive then we can find a utility function u which represents
them

3 Show that if the data has a utility representation then it must
satisfy α and β

• If you go back and look carefully step 1 never made use of the
fact that X was finite

• However, in step 2 we did
• Proof by induction is only guaranteed to hold finitely



What if X is not Finite?

• Just because we made use of the fact that X was finite in
that particular proof doesn’t mean that it is necessary for the
statement to be true

• Maybe we will be lucky and the statement remains true for
arbitrary X ....

• Sadly not



Infinity!

• Some definitions you should know

Definition
The natural, or counting numbers, denoted by N, are the set of
numbers {1, 2, 3, ......}
Definition
The integers, denoted by Z, are the set of numbers
{...,−3,−2,−1, 0, 1, 2, 3, ..}
Definition
The rational numbers, denoted by Q, are the set of numbers

Q =
{ a
b
|a ∈ Z, b ∈N

}

Definition
A set is countably infinite if there is a bijection between that set
and the natural numbers



Infinity!

• Here are some properties of Q and R.

1 Q is countable

2 R is uncountable

3 For every a, b ∈ R such that a < b, there exists a c ∈ Q such
a < c < b (i.e. Q is dense in R)



Lexicographic Preferences

Definition
Let � be a binary relation on R× {1, 2} such that

{a, b} � {c, d} iff
(i) a > c

or (ii) a = c and b ≥ d

You should check that you agree that � is a complete preference
relation.

Fact
There is no utility function that rationalizes �.



Lexicographic Preferences

• Proof:
• Assume that such a utility function exists
• Then, for every a ∈ R it must be the case that
u(a, 2) > u(a, 1)

• Moreover, for every b > a

u(b, 1) > u(a, 2)

• Thus, every a ∈ R generates an interval on the real line, and
these intervals are non-overlapping

• Each such interval includes a rational number
• Contradicts the remark that the rational numbers are
countable and the real numbers are not.



Utility Representation with Non-Finite X

• So what can we do in order to ensure that preferences have a
utility representation?

• First things first: how big is the problem?
• The counter example above made use of the fact that X was
uncountablein

• Does this mean the problem goes away if X is countably
finite?

• It turns out the answer is yes



Utility Representation with Countable X

Theorem
If a relation � on a countable X is complete, transitive and
reflexive then there exists a utility function u : X → R which
represents �, i.e.

u(x) ≥ u(y)⇐⇒ x � y



Utility Representation with Countable X

• Proof:
• Let {xn} be an enumeration of X
• Let x0 = 0
• Assign a utility number u to each xn+1 as in the finite case, by
using the utility representation that worked for x1, ....xn and
then assigning a number that works for xn+1

• This procedure assigns utility numbers to each x ∈ X
• And we know that for any xn the utility function represents
preferences between xn and xm for m ≤ n

• Now take x , y ∈ X . WLOG x = xn , y = xm for m ≤ n
• We know that x � y ⇐⇒ xn � xm ⇐⇒ u(xn) ≥ u(xm)

• Why does this proof not work if X is uncountable?



Utility Representation with Uncountable X

• We know from the example of lexicographic preferences that
we cannot replace ‘countable’with ‘any’X in the previous
theorem

• In order to guarantee that we have a utility representation of a
preference relation on an uncountable X we need another
condition



Continuity

• One way to go is to insist that preferences are continuous
• Broadly speaking, this means that if we change the items a a
little bit the preferences also change only a little bit

• i.e. they don’t ‘jump’

Definition
We say that a preference relation � on a metric space X is
continuous if, for any x , y ∈ X such that x � y , there exists an
ε > 0 such that, for any x ′ ∈ B(x , ε) and y ′ ∈ B(y , ε), x ′ � y ′

• Examples of preferences that are not continuous?
• I like to drink a bottle of wine in the evenings. If I cannot drink
a full bottle then I would prefer not to drink

• Lexicographic preferences (see homework)



Continuity

• An alternative characterization of continuity:

Lemma
A preference relation � on a metric space X is continuous if and
only if the set {(x , y) |x � y} ⊂ X × X is closed

• i.e. For any {xn, yn}∞
n=1 such that xn � yn and

limn {xn, yn} = {x , y} implies x � y
• You will prove for homework that these two definitions are
equivalent



Debreu’s Theorem

• One of the most famous theorems in mathematical social
sciences

Theorem (Debreu)
Let X be a separable metric space, and � be a complete
preference relation on X . If � is continuous, then it can be
represented by a continuous utility function.

• Proving this in all its glory is beyond us, so we are going to
prove something weaker

Theorem
Let X be a convex subset of Rn and � be a complete preference
relation on X . If � is continuous, then it can be represented by a
utility function.



Debreu’s Theorem

Lemma
If � is a continuous complete preference relation on a convex
subset of Rn and x � y then there exists z ∈ X such that
x � z � y



Debreu’s Theorem

• Proof: Assume not
• Construct the following sequence inductively
• Set x0 = x and y0 = 0
• At step n+ 1 assume that xn � x and y � yn
• Take the point m between xn and yn
• It must be the case that either m � x or y � m (otherwise we
have x � m � y which we have ruled out by assumption)

• In the former case set xn+1 to m and yn+1 to yn . In the latter
case, set xn+1 to xn and yn+1 to m

• This generates two sequences which converge to the same
point z

• By continuity of preferences, as xn � x for every n it must be
z � x

• Similarly, as y � yn every n it must be that y � z
• Implies by transitivity that y � x - contradiction



Debreu’s Theorem

• We will need one more definition

Definition
A set Y is dense in the set X if, for every x ∈ X and ε > 0 there
exists y ∈ Y in B(x , ε)

Fact
Rn has a countable dense subset (e.g. the members of Rn where
each coordinate is rational)



Debreu’s Theorem

• We can now prove our theorem
• Step 1: Let Y be a countable dense subset of X . We have
already shown that there exists a function v which represents
� on Y .
• In fact, we can restrict this function to be between −1 and 1

• Step 2: Define u as follows. For any x ∈ X

u(x) = sup {v(z)|z ∈ Y and x � z}

• If no y exists such that x � y let u(x) = −1



Debreu’s Theorem

• Step 3: We now need to show that u represents �. We can
do that in two parts

• First note that if x ∼ y then x � z if and only if y � z and so

u(x) = sup {v(z)|z ∈ Y and x � z}
= sup {v(z)|z ∈ Y and y � z}
= u(y)

• Step 4: If x � y then, by previous lemma, there exists z1
and z2 such that x � z1 � z2 � y
• By continuity this means that we can pick z3 and z4 ∈ Y such
that x � z3 � z4 � y

• Thus

u(x) ≥ u(z3)

> u(z4)

≥ u(y)
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