Utility Maximization 2: Extensions

Mark Dean

GR5211 - Microeconomic Analysis 1

Choice Correspondence?

- Another weird thing about our data is that we assumed we could observe a choice correspondence
 - Multiple alternatives can be chosen in each choice problem
- This is not an easy thing to do!
- What about if we only get to observe a choice function?
 - Only one option chosen in each choice problem
- How do we deal with indifference?

Choice Correspondence?

 One of the things we could do is assume that the decision maker chooses one of the best options

$$C(A) \in \arg\max_{x \in A} u(x)$$

- Is this going to work?
- No!
- Any data set can be represented by this model
 - Why?
 - We can just assume that all alternatives have the same utility!

Choice Correspondence?

Another thing we can do is assume away indifference

$$C(A) = \arg \max_{x \in A} u(x)$$

- for some one-to-one function u
- Is this going to work?
- Yes
 - Implies that data is a function
 - Property α (or GARP) will be necessary and sufficient (if X is finite)
- But maybe we don't want to rule out indifference!
 - Maybe people are sometimes indifferent!

Choice from Budget Sets

- Need some way of identifying when an alternative x is better than alternative y
 - i.e. some way to identify strict preference
- One case in which we can do this is if our data comes from people choosing consumption bundles from budget sets
 - Should be familiar from previous economics courses
- The objects that the DM has to choose between are bundles of different commodities

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

 And they can choose any bundle which satisfies their budget constraint

$$\left\{x \in \mathbb{R}^n_+ | \sum_{i=1}^n p_i x_i \le I\right\}$$

Monotonicity

- Claim: We can use choice from budget sets to identify strict preference
 - Even if we only see a single bundle chosen from each budget set
- As long as we assume something about how preferences work
- One example: More is better

$$x_n \ \geq \ y_n \ \text{for all} \ n \ \text{and} \ x_n > y_n \ \text{for some} \ n$$
 implies that $x \ \succ \ y$

• i.e. preferences are strictly monotonic

Monotonicity

Monotonicity

• Claim: if p^x is the prices at which the bundle x was chosen

$$p^{x}x > p^{x}y$$
 implies $x > y$

• Why?

Revealed Strictly Preferred

- Because x was chosen, we know $x \succeq y$
- Because $p^x x > p^x y$ we know that y was **inside** the budget set when x was chosen
- Could it be that $y \succeq x$?

Revealed Strictly Preferred

- Because y is inside the budget set, there is a z which is better than y and affordable when x was chosen
- Implies that $x \succeq z$ and (by monotonicity) $z \succ y$
- By transitivity $x \succ y$

Revealed Strictly Preferred

 In fact we can make use of a weaker property than strict monotonicity

Definition

We say preferences \succeq are **locally non-satiated** on a metric space X if, for every $x \in X$ and $\varepsilon > 0$, there exists

$$y \in B(x, \varepsilon)$$
 such that $y \succ x$

Lemma

Let x^j and x^k be two commodity bundles such that $p^j x^k < p^j x^j$. If the DM's choices can be rationalized by a complete locally non-satiated preference relation, then it must be the case that $x^j > x^k$

Revealed Preference

- When dealing with choice from budget sets we say
 - x is directly revealed preferred to y if $p^{x}x \ge p^{x}y$
 - x is **revealed preferred to** y if we can find a set of alternatives w_1, w_2, w_n such that
 - x is directly revealed preferred to w_1
 - w_1 is directly revealed preferred to w_2
 - ...
 - w_{n-1} is directly revealed preferred to w_n
 - w_n is directly revealed preferred to y
 - x is strictly revealed preferred to y if $p^{x}x > p^{x}y$

Theorem (Afriat)

Let $\{x^1,, x^l\}$ be a set of chosen commodity bundles at prices $\{p^1, ..., p^l\}$. The following statements are equivalent:

- The data set can be rationalized by a locally non-satiated set of preferences ≥ that can be represented by a utility function
- 2 The data set satisfies GARP (i.e. xRy implies not ySx)
- **3** There exists positive $\left\{u^i, \lambda^i\right\}_{i=1}^l$ such that

$$u^{i} \leq u^{j} + \lambda^{j} \rho^{j} (x^{i} - x^{j}) \ \forall \ i, j$$

4 There exists a continuous, concave, piecewise linear, strictly monotonic utility function u that rationalizes the data

- Compare statement 1 and statement 4

 - There exists a continuous, concave, piecewise linear, strictly monotonic utility function u that rationalizes the data
- This tells us that there is no empirical content to the assumptions that utility is
 - Continuous
 - Concave
 - Piecewise linear
- If a data set can be rationalized by any locally non-satiated set of preferences it can be rationalized by a utility function which has these properties

- What about statement 3?
 - There exists positive $\left\{u^i, \lambda^i\right\}_{i=1}^l$ such that

$$u^{i} \leq u^{j} + \lambda^{j} p^{j} (x^{i} - x^{j}) \ \forall \ i, j$$

- This says that the data is rationalizable if a certain linear programming problem has a solution
 - Easy to check computationally
 - Less insight than GARP
 - But there are some models which do not have an equivalent of GARP but do have an equivalent of these conditions

- Where do these conditions come from?
- Imagine that we knew that this problem was differentiable

$$\max u(x)$$
 subject to $\sum_j p_j^i x_j \leq I$

with u concave

ullet FOC for every problem i and good j

$$\frac{\partial u(x^i)}{\partial x_i^i} = \lambda^i p_j^i$$

Implies

$$\nabla u(x^i) = \lambda^i p^i$$

• where ∇u is the gradient function and p^i is the vector of prices

• Recall (or learn), that for concave functions

$$u(x^i) \le u(x^j) + \nabla u(x^j)(x^i - x^i)$$

- i.e. function lies below the tangent
- So

$$u(x^i) \le u(x^j) + \lambda^j p^j (x^i - x^j)$$

What if X is not Finite?

 So far we have assumed that the set of available alternatives is finite

Theorem

A Choice Correspondence on a **finite** X has a utility representation if and only if it satisfies axioms α and β

- However, this may be limiting
 - Choice from lotteries
 - Choice from budget sets
- Can we drop the word 'finite' from the above theorem?

What if X is not Finite?

- Remember we proved the theorem in three steps
 - ① Show that if the data satisfies α and β then we can find a complete, transitive, reflexive preference relation \succeq which represents the data
 - Show that if the preferences are complete, transitive and reflexive then we can find a utility function u which represents them
 - 3 Show that if the data has a utility representation then it must satisfy α and β
- If you go back and look carefully step 1 never made use of the fact that X was finite
- However, in step 2 we did
 - Proof by induction is only guaranteed to hold finitely

What if X is not Finite?

- Just because we made use of the fact that X was finite in that particular proof doesn't mean that it is necessary for the statement to be true
- Maybe we will be lucky and the statement remains true for arbitrary X....
- Sadly not

Some definitions you should know

Definition

The natural, or counting numbers, denoted by \mathbb{N} , are the set of numbers $\{1, 2, 3, \ldots\}$

Definition

The integers, denoted by \mathbb{Z} , are the set of numbers $\{..., -3, -2, -1, 0, 1, 2, 3, ..\}$

Definition

The rational numbers, denoted by \mathbb{Q} , are the set of numbers

$$\mathbb{Q} = \left\{ \frac{a}{b} | a \in \mathbb{Z}, \ b \in \mathbb{N} \right\}$$

Definition

A set is *countably infinite* if there is a bijection between that set and the natural numbers

Infinity!

- Here are some properties of $\mathbb Q$ and $\mathbb R$.
- 1 Q is countable
- 2 R is uncountable
- 3 For every $a, b \in \mathbb{R}$ such that a < b, there exists a $c \in \mathbb{Q}$ such a < c < b (i.e. \mathbb{Q} is dense in \mathbb{R})

Lexicographic Preferences

Definition

Let \succeq be a binary relation on $\mathbb{R} \times \{1,2\}$ such that

$$\{a,b\} \succeq \{c,d\} \text{ iff}$$

(i) $a > c$
or (ii) $a = c$ and $b \geq d$

You should check that you agree that \succeq is a complete preference relation.

Fact

There is no utility function that rationalizes \succeq .

Lexicographic Preferences

• Proof:

- Assume that such a utility function exists
- Then, for every $a \in \mathbb{R}$ it must be the case that u(a,2) > u(a,1)
- Moreover, for every b > a

- Thus, every $a \in \mathbb{R}$ generates an interval on the real line, and these intervals are non-overlapping
- Each such interval includes a rational number
- Contradicts the remark that the rational numbers are countable and the real numbers are not.

Utility Representation with Non-Finite X

- So what can we do in order to ensure that preferences have a utility representation?
- First things first: how big is the problem?
- The counter example above made use of the fact that X was uncountablein
- Does this mean the problem goes away if X is countably finite?
- It turns out the answer is yes

Utility Representation with Countable X

Theorem

If a relation \succeq on a **countable** X is complete, transitive and reflexive then there exists a utility function $u: X \to \mathbb{R}$ which represents \succeq , i.e.

$$u(x) \ge u(y) \Longleftrightarrow x \succeq y$$

Utility Representation with Countable X

- Proof:
 - Let $\{x_n\}$ be an enumeration of X
 - Let $x_0 = 0$
 - Assign a utility number u to each x_{n+1} as in the finite case, by using the utility representation that worked for $x_1, ..., x_n$ and then assigning a number that works for x_{n+1}
 - This procedure assigns utility numbers to each $x \in X$
 - And we know that for any x_n the utility function represents preferences between x_n and x_m for $m \le n$
 - Now take $x, y \in X$. WLOG $x = x_n, y = x_m$ for $m \le n$
 - We know that $x \succeq y \iff x_n \succeq x_m \iff u(x_n) \geq u(x_m)$
- Why does this proof not work if X is uncountable?

Utility Representation with Uncountable X

- We know from the example of lexicographic preferences that we cannot replace 'countable' with 'any' X in the previous theorem
- In order to guarantee that we have a utility representation of a preference relation on an uncountable X we need another condition

Continuity

- One way to go is to insist that preferences are continuous
- Broadly speaking, this means that if we change the items a a little bit the preferences also change only a little bit
- i.e. they don't 'jump'

Definition

We say that a preference relation \succeq on a metric space X is continuous if, for any $x,y\in X$ such that $x\succ y$, there exists an $\varepsilon>0$ such that, for any $x'\in B(x,\varepsilon)$ and $y'\in B(y,\varepsilon)$, $x'\succ y'$

- Examples of preferences that are not continuous?
 - I like to drink a bottle of wine in the evenings. If I cannot drink
 a full bottle then I would prefer not to drink
 - Lexicographic preferences (see homework)

An alternative characterization of continuity:

Lemma

A preference relation \succeq on a metric space X is continuous if and only if the set $\{(x,y)|x\succeq y\}\subset X\times X$ is closed

- i.e. For any $\{x_n, y_n\}_{n=1}^{\infty}$ such that $x_n \succeq y_n$ and $\lim_n \{x_n, y_n\} = \{x, y\}$ implies $x \succeq y$
- You will prove for homework that these two definitions are equivalent

One of the most famous theorems in mathematical social sciences

Theorem (Debreu)

Let X be a separable metric space, and \succeq be a complete preference relation on X. If \succeq is continuous, then it can be represented by a continuous utility function.

 Proving this in all its glory is beyond us, so we are going to prove something weaker

Theorem

Let X be a convex subset of \mathbb{R}^n and \succeq be a complete preference relation on X. If \succeq is continuous, then it can be represented by a utility function.

Lemma

If \succeq is a continuous complete preference relation on a convex subset of \mathbb{R}^n and $x \succ y$ then there exists $z \in X$ such that $x \succ z \succ y$

Proof: Assume not.

- Construct the following sequence inductively
- Set $x_0 = x$ and $y_0 = 0$
- At step n+1 assume that $x_n \succeq x$ and $y \succeq y_n$
- Take the point m between x_n and y_n
- It must be the case that either $m \succeq x$ or $y \succeq m$ (otherwise we have $x \succ m \succ y$ which we have ruled out by assumption)
- In the former case set x_{n+1} to m and y_{n+1} to y_n . In the latter case, set x_{n+1} to x_n and y_{n+1} to m
- This generates two sequences which converge to the same point z
- By continuity of preferences, as $x_n \succeq x$ for every n it must be $z \succeq x$
- Similarly, as $y \succeq y_n$ every n it must be that $y \succeq z$
- Implies by transitivity that $y \succeq x$ contradiction

• We will need one more definition

Definition

A set Y is **dense** in the set X if, for every $x \in X$ and $\varepsilon > 0$ there exists $y \in Y$ in $B(x, \varepsilon)$

Fact

 \mathbb{R}^n has a countable dense subset (e.g. the members of \mathbb{R}^n where each coordinate is rational)

- We can now prove our theorem
- - In fact, we can restrict this function to be between -1 and 1
- Step 2: Define u as follows. For any $x \in X$

$$u(x) = \sup \{v(z) | z \in Y \text{ and } x \succ z\}$$

• If no y exists such that $x \succ y$ let u(x) = -1

- **Step 3:** We now need to show that *u* represents *\(\subsection \)*. We can do that in two parts
 - First note that if $x \sim y$ then $x \succ z$ if and only if $y \succ z$ and so

$$u(x) = \sup \{v(z)|z \in Y \text{ and } x \succ z\}$$

=
$$\sup \{v(z)|z \in Y \text{ and } y \succ z\}$$

=
$$u(y)$$

- **Step 4:** If $x \succ y$ then, by previous lemma, there exists z_1 and z_2 such that $x \succ z_1 \succ z_2 \succ y$
 - By continuity this means that we can pick z_3 and $z_4 \in Y$ such that $x \succ z_3 \succ z_4 \succ y$
 - Thus

$$u(x) \geq u(z_3)$$

$$> u(z_4)$$

$$\geq u(y)$$