Consumer Choice 2

Mark Dean

GR6211 - Microeconomic Analysis 1

The Consumer's Problem

- We are now in the position to think about what the solution to the consumer's problem looks like
- We will think of the consumer's problem as defined by
 - A set of preferences <u>≻</u>
 - A set of prices $p \in \mathbb{R}^{\overline{N}}_{++}$

i

- A wealth level w
- With the problem being

$$ext{choose } x \in \mathbb{R}^N_+$$

n order to maximize \succeq
subject to $\sum_{i=1}^N p_i x_i \leq w$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• **Question:** is the consumer's problem guaranteed to have a solution?

- **Question:** is the consumer's problem guaranteed to have a solution?
- Not without some further assumptions
- Here is a simple example
 - Let N = 1, w = 1 and $p_1 = 1$
 - Let preferences be such that higher numbers are preferred so long as they are less that 1, so

If x < 1 then $x \succeq y$ iff $x \ge y$ If $x \ge 1$ the $x \succeq y$ iff $y \ge x$

- We need to add something else
- Any guesses what?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

If preferences \succeq are continuous then the consumer's problem has a solution

• Proof follows fairly directly from Weierstrass Theorem!

Theorem

If preferences \succeq are continuous then the consumer's problem has a solution

• Proof follows fairly directly from Weierstrass Theorem!

Theorem

Any continuous function evaluated on a compact set has a maximum and a minimum

Theorem

If preferences \succeq are continuous then the consumer's problem has a solution

• Proof follows fairly directly from Weierstrass Theorem!

Theorem

Any continuous function evaluated on a compact set has a maximum and a minimum

- Means that in order to guarantee existence we need three properties
 - Continuity of the function (comes from continuity of preferences)
 - Closedness of the budget set (comes from the fact that it is defined using weak inequalities)
 - Boundedness of the budget set (comes from the fact that we insist prices are strictly positive)

The Walrasian Demand Correspondence

- We are now in a position to define the Walrasian demand correspondence
- This is the amount of each good that the consumer will demand as a function of prices and income
- x(p, w) ⊂ ℝ^N₊ is the (set of) solution to the consumer's maximization problem when prices are p and wealth is w
 - i.e. the set of all bundles that maximize preferences (or equivalently utility) when prices are p and wealth is w
- Here are some straightforward properties of x when we maintain the assumptions of
 - Continuity
 - Local non-satiation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Fact

x is homogeneous of degree zero (i.e. $x(\alpha p, \alpha w) = x(p, w)$ for $\alpha > 0$)

Fact

x is homogeneous of degree zero (i.e. $x(\alpha p, \alpha w) = x(p, w)$ for $\alpha > 0$)

• This follows from the fact that

$$\left\{ x \in \mathbb{R}^n_+ | \sum_{i=1}^n p_i x_i \le w \right\}$$
$$= \left\{ x \in \mathbb{R}^n_+ | \sum_{i=1}^n \alpha p_i x_i \le \alpha w \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fact Walras Law:

$$\sum_{i=1}^n p_i x_i = w$$

for any $x \in x(p, w)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fact Walras Law:

$$\sum_{i=1}^n p_i x_i = w$$

for any $x \in x(p, w)$

• This follows directly from local non-satiation

Rationalizing a Demand Correspondence

- We know that a demand correspondence must be homogeneous of degree zero and satisfy Walras Law
- Is any such function rationalizable?
 - i.e. there exists preferences that would give rise to that demand function as a result of optimization
- The answer is no, as the following condition demonstrates
 - We will provide conditions that do guarantee rationalizability later in the course

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Example: Spending all one's money on the most expensive good:

$$x(p, w) = \begin{cases} (0, w/p_2) \text{ if } p_2 \ge p_1 \\ (w/p_1, 0) \text{ if } p_1 > p_2 \end{cases}$$

- This is homogenous of degree 0 and satisfies Walras law
- But cannot be rationalized (see diagram)

- Our final two properties are going to involve uniqueness and continuity of x
- Further down the road it will be very convenient for
 - x to be a function (not a correspondence)
 - x to be continuous
- What can we assume to guarantee this?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• First: do we have uniqueness?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- First: do we have uniqueness?
- No! (see diagram)

- First: do we have uniqueness?
- No! (see diagram)
- Here, convexity will come to our rescue

Fact

If \succeq is convex then x(p, w) is a convex set. If \succeq is strictly convex then x(p, w) is a function

• Proof comes pretty much directly from the definition and the fact that the budget set is convex

• In fact, if x is a function then we also get continuity

Fact

If x is single values and \succeq is continuous then x is continuous

• Proof comes directly from the theorem of the maximum

Theorem (The Theorem of the Maximum) *Let*

- X and Y be metric spaces (Y will be the set of things that can be chosen, X the set of parameters)
- Γ : X ⇒ Y be compact valued and continuous (this is the budget set)
- $f: X \times Y \to \mathbb{R}$ be continuous, (this is the utility function) Now define $y^*: X \Rightarrow Y$ as the set of maximizers of f given parameters x

$$y^*(x) = \arg\max_{y \in \Gamma(x)} f(x, y)$$

and define $f^*: X \Rightarrow Y$ as the maximized value of f for f given parameters x

$$f^*(x) = \max_{y \in \Gamma(x)} f(x, y)$$

Theorem (The Theorem of the Maximum) *Then*

1 *y*^{*} *is upper hemi-continuous and compact valued*

- i.e for $x_n \to x$ and $y_n \in y^*(x_n)$ such that $y_n \to y$ implies $y \in y^*(x)$
- 2 f* is continuous

Corollary

If y* is single valued it is continuous

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Graphically, what does the solutions to the consumer's problem look like?
- Here it is useful to think in two dimensions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- If the solution to the consumer's problem is interior, then
 - The indifference curve
 - The budget line

are tangent to each other

- Implies that the marginal rate of substitution is the same as the price ratio
- This makes intuitive sense
 - The rate at which goods can be traded off against each other in the market
 - is equal to the rate at which they can be traded off leaving the consumer indifferent
 - If not, then utility could be increased by switching to the 'cheaper' good

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- What about corner solutions?
- For example, none of good 2 is purchased

- What about corner solutions?
- For example, none of good 2 is purchased
- Here, the indifference curve and the price line need not be equal
- But the price line must be **shallower** than the slope of indifference curve

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 差||||の��

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• In the case in which utility is continuously differentiable, we can use the **Kuhn Tucker** (necessary) conditions to capture this intuition

- In the case in which utility is continuously differentiable, we can use the **Kuhn Tucker** (necessary) conditions to capture this intuition
- For the problem

 $\max u(x)$

subject to
$$\sum_{i=1}^{n} p_i x_i - w = 0$$

 $-x_i \leq 0 \ \forall i$

• We can set up the Lagrangian for the problem

$$u(x) - \lambda \left(\sum_{i=1}^{n} p_i x_i - w\right) - \sum_{i=1}^{n} \mu_i \left(-x_i\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 A necessary condition of a solution to the optimization problem x^{*} is the existence of λ, and μ_i ≥ 0 such that

$$\frac{\partial u(x^*)}{\partial x_i} - \lambda p_i + \mu_i = 0$$

and $x_i^* \cdot \mu_i = 0$ for all i

• So, if
$$x_i^* > 0$$
 then $\mu_i = 0$ and

$$\frac{\partial u(x^*)}{\partial x_i} = \lambda p_i$$

• If $x_i^* = 0$ then $\mu_i \ge 0$ and so

$$\frac{\partial u(x^*)}{\partial x_i} \leq \lambda p_i$$

This can be summarized compactly by saying, that for a solution x*

$$abla u(x^*) \leq \lambda p$$
 $x^* [
abla u(x^*) - \lambda p] = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This can be summarized compactly by saying, that for a solution x*

$$abla u(x^*) \leq \lambda p$$

 $x^* [\nabla u(x^*) - \lambda p] = 0$

Note that this implies that

$$\frac{\frac{\partial u(x^*)}{\partial x_i}}{\frac{\partial u(x^*)}{\partial x_j}} = \frac{p_i}{p_j}$$

• if x_i and x_i are both strictly positive

- These conditions are **necessary** for an optimum
- They become sufficient if preferences are convex
- This follows from the KT theorem, but Rubinstein provides a nice direct proof

Theorem

If \succeq are strongly monotonic, convex, continuous and differentiable^{*}, and

1
$$px^* = w$$

2 for every k such that $x_k^* > 0$

$$\frac{\frac{\partial u(x^*)}{\partial x_k}}{p_k} \geq \frac{\frac{\partial u(x^*)}{\partial x_j}}{p_j}$$

Then x^* is a solution to the consumer's problem

- What do we mean by differentiable*?
- Not going to go into this formally
- The important part for us is that it means the following.
- Define d as an 'improving direction' at x if there exists a λ^{*} such that, for all 0 < λ ≤ λ^{*}

$$x + \lambda d \succ x$$

 If ≿ is differentiable then d is an improving direction iff d.∇u > 0

The Demand Function and Prices

- Notice that so far we have **not** said that demand must decrease in price
- This is because it is not generally true!
- Example:

$$u(x_1, x_2) = \begin{cases} x_1 + x_2 \text{ if } x_1 + x_2 < 1\\ x_1 + 4x_2 \text{ if } x_1 + x_2 \ge 1 \end{cases}$$

- Consider *x*((*p*₁, 2), 1)
 - What happens in the range $p_1 \in [1, \frac{1}{2}]$
 - Maximize utility by spending everything on good 2 while making sure $x_1+x_2 \geq 1$

$$x((p_1, 2, 1) = (1/(2-p_1), (1-p_1)/(2-p_1))$$

The Demand Function and Prices

- As we shall see in more detail later, this is basically because change in prices changes **income** as well as relative prices
- This points to a version of the above statement which is true

Theorem

Let x be a rationalizable demand function that satisfies Walras' law and I' = p'x(p, I). Then

$$[p'-p][x(p',I')-x(p.I)] \le 0$$

The Demand Function and Prices

- As we shall see in more detail later, this is basically because change in prices changes **income** as well as relative prices
- This points to a version of the above statement which is true

Theorem

Let x be a rationalizable demand function that satisfies Walras' law and I' = p'x(p, I). Then

$$[p'-p][x(p', I') - x(p.I)] \le 0$$

- Means that if price of good *i* falls then demand for it cannot also fall
- Note that this is slightly different to the claim in Rubinstein