Consumer Choice 2

Mark Dean

GR6211 - Microeconomic Analysis 1

The Consumer's Problem

- We are now in the position to think about what the solution to the consumer's problem looks like
- We will think of the consumer's problem as defined by
- A set of preferences \succeq
- A set of prices $p \in \mathbb{R}_{++}^{N}$
- A wealth level w
- With the problem being

$$
\begin{aligned}
\text { choose } x & \in \mathbb{R}_{+}^{N} \\
\text { in order to maximize } & \succeq \\
\text { subject to } \sum_{i=1}^{N} p_{i} x_{i} & \leq w
\end{aligned}
$$

Existence

- Question: is the consumer's problem guaranteed to have a solution?

Existence

- Question: is the consumer's problem guaranteed to have a solution?
- Not without some further assumptions
- Here is a simple example
- Let $N=1, w=1$ and $p_{1}=1$
- Let preferences be such that higher numbers are preferred so long as they are less that 1 , so

$$
\begin{aligned}
& \text { If } x<1 \text { then } x \succeq y \text { iff } x \geq y \\
& \text { If } x \geq 1 \text { the } x \succeq y \text { iff } y \geq x
\end{aligned}
$$

- We need to add something else
- Any guesses what?

Existence

Theorem
If preferences \succeq are continuous then the consumer's problem has a solution

- Proof follows fairly directly from Weierstrass Theorem!

Existence

Theorem
If preferences \succeq are continuous then the consumer's problem has a solution

- Proof follows fairly directly from Weierstrass Theorem!

Theorem
Any continuous function evaluated on a compact set has a maximum and a minimum

Existence

Theorem

If preferences \succeq are continuous then the consumer's problem has a solution

- Proof follows fairly directly from Weierstrass Theorem!

Theorem
Any continuous function evaluated on a compact set has a maximum and a minimum

- Means that in order to guarantee existence we need three properties
- Continuity of the function (comes from continuity of preferences)
- Closedness of the budget set (comes from the fact that it is defined using weak inequalities)
- Boundedness of the budget set (comes from the fact that we insist prices are strictly positive)

The Walrasian Demand Correspondence

- We are now in a position to define the Walrasian demand correspondence
- This is the amount of each good that the consumer will demand as a function of prices and income
- $x(p, w) \subset \mathbb{R}_{+}^{N}$ is the (set of) solution to the consumer's maximization problem when prices are p and wealth is w
- i.e. the set of all bundles that maximize preferences (or equivalently utility) when prices are p and wealth is w
- Here are some straightforward properties of x when we maintain the assumptions of
- Continuity
- Local non-satiation

Properties of the Demand Correspondence

[^0]
Properties of the Demand Correspondence

Fact

x is homogeneous of degree zero (i.e. $x(\alpha p, \alpha w)=x(p, w)$ for $\alpha>0$)

- This follows from the fact that

$$
\begin{aligned}
& \left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} p_{i} x_{i} \leq w\right\} \\
= & \left\{x \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} \alpha p_{i} x_{i} \leq \alpha w\right\}
\end{aligned}
$$

Properties of the Demand Correspondence

Fact

Walras Law:

$$
\sum_{i=1}^{n} p_{i} x_{i}=w
$$

for any $x \in x(p, w)$

Properties of the Demand Correspondence

Fact

Walras Law:

$$
\sum_{i=1}^{n} p_{i} x_{i}=w
$$

for any $x \in x(p, w)$

- This follows directly from local non-satiation

Rationalizing a Demand Correspondence

- We know that a demand correspondence must be homogeneous of degree zero and satisfy Walras Law
- Is any such function rationalizable?
- i.e. there exists preferences that would give rise to that demand function as a result of optimization
- The answer is no, as the following condition demonstrates
- We will provide conditions that do guarantee rationalizability later in the course

Rationalizing a Demand Correspondence

- Example: Spending all one's money on the most expensive good:

$$
x(p, w)= \begin{cases}\left(0, w / p_{2}\right) & \text { if } p_{2} \geq p_{1} \\ \left(w / p_{1}, 0\right) & \text { if } p_{1}>p_{2}\end{cases}
$$

- This is homogenous of degree 0 and satisfies Walras law
- But cannot be rationalized (see diagram)

Properties of the Demand Correspondence

- Our final two properties are going to involve uniqueness and continuity of x
- Further down the road it will be very convenient for
- x to be a function (not a correspondence)
- x to be continuous
- What can we assume to guarantee this?

Properties of the Demand Correspondence

- First: do we have uniqueness?

Properties of the Demand Correspondence

- First: do we have uniqueness?
- No! (see diagram)

Properties of the Demand Correspondence

- First: do we have uniqueness?
- No! (see diagram)
- Here, convexity will come to our rescue

Fact

If \succeq is convex then $x(p, w)$ is a convex set. If \succeq is strictly convex then $x(p, w)$ is a function

- Proof comes pretty much directly from the definition and the fact that the budget set is convex

Properties of the Demand Correspondence

- In fact, if x is a function then we also get continuity

Fact

If x is single values and \succeq is continuous then x is continuous

- Proof comes directly from the theorem of the maximum

Properties of the Demand Correspondence

Theorem (The Theorem of the Maximum)

Let

- X and Y be metric spaces (Y will be the set of things that can be chosen, X the set of parameters)
- $\Gamma: X \Rightarrow Y$ be compact valued and continuous (this is the budget set)
- $f: X \times Y \rightarrow \mathbb{R}$ be continuous, (this is the utility function) Now define $y^{*}: X \Rightarrow Y$ as the set of maximizers of f given parameters x

$$
y^{*}(x)=\arg \max _{y \in \Gamma(x)} f(x, y)
$$

and define $f^{*}: X \Rightarrow Y$ as the maximized value of f for f given parameters x

$$
f^{*}(x)=\max _{y \in \Gamma(x)} f(x, y)
$$

Properties of the Demand Correspondence

Theorem (The Theorem of the Maximum)
Then
(1) y^{*} is upper hemi-continuous and compact valued

- i.e for $x_{n} \rightarrow x$ and $y_{n} \in y^{*}\left(x_{n}\right)$ such that $y_{n} \rightarrow y$ implies $y \in y^{*}(x)$
(2) f^{*} is continuous

Corollary
If y^{*} is single valued it is continuous

Tangency Conditions

- Graphically, what does the solutions to the consumer's problem look like?
- Here it is useful to think in two dimensions

Tangency Conditions

Tangency Conditions

Tangency Conditions

- If the solution to the consumer's problem is interior, then
- The indifference curve
- The budget line
are tangent to each other
- Implies that the marginal rate of substitution is the same as the price ratio
- This makes intuitive sense
- The rate at which goods can be traded off against each other in the market
- is equal to the rate at which they can be traded off leaving the consumer indifferent
- If not, then utility could be increased by switching to the 'cheaper' good

Tangency Conditions

- What about corner solutions?
- For example, none of good 2 is purchased

Tangency Conditions

- What about corner solutions?
- For example, none of good 2 is purchased
- Here, the indifference curve and the price line need not be equal
- But the price line must be shallower than the slope of indifference curve

Tangency Conditions

Kuhn Tucker Conditions

- In the case in which utility is continuously differentiable, we can use the Kuhn Tucker (necessary) conditions to capture this intuition

Kuhn Tucker Conditions

- In the case in which utility is continuously differentiable, we can use the Kuhn Tucker (necessary) conditions to capture this intuition
- For the problem

$$
\begin{aligned}
& \max u(x) \\
& \text { subject to } \sum_{i=1}^{n} p_{i} x_{i}-w=0 \\
& -x_{i} \leq 0 \forall i
\end{aligned}
$$

- We can set up the Lagrangian for the problem

$$
u(x)-\lambda\left(\sum_{i=1}^{n} p_{i} x_{i}-w\right)-\sum_{i=1}^{n} \mu_{i}\left(-x_{i}\right)
$$

Kuhn Tucker Conditions

- A necessary condition of a solution to the optimization problem x^{*} is the existence of λ, and $\mu_{i} \geq 0$ such that

$$
\begin{aligned}
\frac{\partial u\left(x^{*}\right)}{\partial x_{i}}-\lambda p_{i}+\mu_{i} & =0 \\
\text { and } x_{i}^{*} \cdot \mu_{i} & =0 \text { for all } i
\end{aligned}
$$

- So, if $x_{i}^{*}>0$ then $\mu_{i}=0$ and

$$
\frac{\partial u\left(x^{*}\right)}{\partial x_{i}}=\lambda p_{i}
$$

- If $x_{i}^{*}=0$ then $\mu_{i} \geq 0$ and so

$$
\frac{\partial u\left(x^{*}\right)}{\partial x_{i}} \leq \lambda p_{i}
$$

Kuhn Tucker Conditions

- This can be summarized compactly by saying, that for a solution x^{*}

$$
\begin{aligned}
\nabla u\left(x^{*}\right) & \leq \lambda p \\
x^{*}\left[\nabla u\left(x^{*}\right)-\lambda p\right] & =0
\end{aligned}
$$

Kuhn Tucker Conditions

- This can be summarized compactly by saying, that for a solution x^{*}

$$
\begin{aligned}
\nabla u\left(x^{*}\right) & \leq \lambda p \\
x^{*}\left[\nabla u\left(x^{*}\right)-\lambda p\right] & =0
\end{aligned}
$$

- Note that this implies that

$$
\frac{\frac{\partial u\left(x^{*}\right)}{\partial x_{i}}}{\frac{\partial u\left(x^{*}\right)}{\partial x_{j}}}=\frac{p_{i}}{p_{j}}
$$

- if x_{i} and x_{j} are both strictly positive

Kuhn Tucker Conditions

- These conditions are necessary for an optimum
- They become sufficient if preferences are convex
- This follows from the KT theorem, but Rubinstein provides a nice direct proof

Theorem
If \succeq are strongly monotonic, convex, continuous and differentiable*, and
(1) $p x^{*}=w$
(2) for every k such that $x_{k}^{*}>0$

$$
\frac{\frac{\partial u\left(x^{*}\right)}{\partial x_{k}}}{p_{k}} \geq \frac{\frac{\partial u\left(x^{*}\right)}{\partial x_{j}}}{p_{j}}
$$

Then x^{*} is a solution to the consumer's problem

Kuhn Tucker Conditions

- What do we mean by differentiable*?
- Not going to go into this formally
- The important part for us is that it means the following.
- Define d as an 'improving direction' at x if there exists a λ^{*} such that, for all $0<\lambda \leq \lambda^{*}$

$$
x+\lambda d \succ x
$$

- If \succeq is differentiable then d is an improving direction iff d. $\nabla u>0$

The Demand Function and Prices

- Notice that so far we have not said that demand must decrease in price
- This is because it is not generally true!
- Example:

$$
u\left(x_{1}, x_{2}\right)=\left\{\begin{array}{c}
x_{1}+x_{2} \text { if } x_{1}+x_{2}<1 \\
x_{1}+4 x_{2} \text { if } x_{1}+x_{2} \geq 1
\end{array}\right.
$$

- Consider $x\left(\left(p_{1}, 2\right), 1\right)$
- What happens in the range $p_{1} \in\left[1, \frac{1}{2}\right]$
- Maximize utility by spending everything on good 2 while making sure $x_{1}+x_{2} \geq 1$

$$
x\left(\left(p_{1}, 2,1\right)=\left(1 /\left(2-p_{1}\right),\left(1-p_{1}\right) /\left(2-p_{1}\right)\right)\right.
$$

The Demand Function and Prices

- As we shall see in more detail later, this is basically because change in prices changes income as well as relative prices
- This points to a version of the above statement which is true

Theorem
Let x be a rationalizable demand function that satisfies Walras' law and $I^{\prime}=p^{\prime} x(p, I)$. Then

$$
\left[p^{\prime}-p\right]\left[x\left(p^{\prime}, I^{\prime}\right)-x(p . I)\right] \leq 0
$$

The Demand Function and Prices

- As we shall see in more detail later, this is basically because change in prices changes income as well as relative prices
- This points to a version of the above statement which is true

Theorem

Let x be a rationalizable demand function that satisfies Walras' law and $I^{\prime}=p^{\prime} x(p, I)$. Then

$$
\left[p^{\prime}-p\right]\left[x\left(p^{\prime}, I^{\prime}\right)-x(p . I)\right] \leq 0
$$

- Means that if price of good i falls then demand for it cannot also fall
- Note that this is slightly different to the claim in Rubinstein

[^0]: Fact
 x is homogeneous of degree zero (i.e. $x(\alpha p, \alpha w)=x(p, w)$ for $\alpha>0$)

