Consumer Choice 1 - Proofs

Mark Dean

GR6211 - Microeconomic Analysis 1

Convexity

- Another property often assumed is convexity
- The preference relation \succeq is convex if the upper contour set $U_{\succeq}(x)=\{y \in X \mid y \succeq x\}$ is convex
- i.e. for any x, z, y such that $y \succeq x$ and $z \succeq x$ and $\alpha \in(0,1)$

$$
(\alpha y+(1-\alpha) z) \succeq x
$$

- What do convex indifference curves look like?
- Some alternative (equivalent) definitions of convexity
- If $x \succeq y$ then for any $\alpha(0,1) \alpha x+(1-\alpha) y \succeq y$
- For all $z=\alpha x+(1-\alpha) y$ either $z \succeq x$ or $z \succeq y$

Convexity

- Proof that all are equivalent
- $1 \Rightarrow$ 2: Direct: $x \succeq y$ and $y \succeq y$ so $\alpha x+(1-\alpha) y \succeq y$
- $2 \Rightarrow 3$: Either $x \succeq y$ in which case $z \succeq y$ or $y \succeq x$ and so $z \succeq x$
- $3 \Rightarrow 1$: WLOG assume $y \succeq z$, then $\alpha y+(1-\alpha) z \succeq z \succeq x$

Convexity

Fact

A complete preference relation with a utility representation is convex if and only if it can be represented by a quasi concave utility function - i.e., for every x the set

$$
\{y \in X \mid u(y) \geq u(x)\}
$$

is convex

Proof.

Immediate let $y \succeq x$ and $z \succeq x$ then $u(y) \geq u(x)$ and $u(z) \geq u(x)$, by q concavity $u(\alpha y+(1-\alpha) z) \geq u(x)$ and so $\alpha y+(1-\alpha) z \succeq x$
Similarly, say $u(y) \geq u(x)$ and $u(z) \geq u(x)$ implies $y \succeq x$ and $z \succeq x$ by convexity $\alpha y+(1-\alpha) z \succeq x$ and so
$u(\alpha y+(1-\alpha) z) \geq u(x)$

Homothetic Preferences

Fact

A complete, increasing, continuous homothetic preference relation with a utility representation can be represented with a utility function which is homogenous of degree 1, i.e.

$$
u\left(\alpha x_{1}, \ldots \alpha x_{n}\right)=\alpha u\left(x_{1}, \ldots x_{n}\right)
$$

Proof.

You have shown for homework that a utility representation for such preferences is given by

$$
u(x)=a \mid\{a, a, \ldots a\} \sim x
$$

If \succeq is homothetic, then

$$
\begin{aligned}
\{a, a, \ldots a\} & \sim x \rightarrow\{\alpha a, \alpha a, \ldots \alpha a\} \sim \alpha x \\
& \Rightarrow u(\alpha x)=\alpha a=\alpha u(x)
\end{aligned}
$$

Quasi Linear Preferences

Fact

A complete, continuous strictly monotonic, quasi linear preference relation with a utility representation can be represented with a utility function of the form

$$
u(x)=v\left(x_{2}, \ldots x_{k}\right)+x_{1}
$$

Lemma

Under the conditions of the proof, for any $x_{2}, \ldots x_{k}$ there exists a $v\left(x_{2}, \ldots . x_{k}\right)$ such that

$$
\left(0, x_{2}, \ldots x_{k}\right) \sim\left(v\left(x_{2}, \ldots . x_{k}\right), 0, \ldots, 0\right)
$$

Quasi Linear Preferences

Lemma

Proof.

(for $k=2$): We want to want to show that for every x_{2} there is some x_{1} such that $\left(x_{1}, 0\right) \sim\left(0, x_{2}\right)$. Thus we need to show that the following set is empty

$$
T=\left\{t \mid(0, t) \succ\left(x_{1}, 0\right) \forall x_{1}\right\}
$$

Assume not

Quasi Linear Preferences

Proof.

[Proof (cont)] First assume $m \in T$. Then $m>0$ and
$(1, m) \succ(0, m)(M O N)$ and an ε such that $(1, m-\varepsilon) \succ(0, m)$
(CONT) and so $(1, m-\varepsilon) \succ\left(x_{1}+1,0\right) \forall x_{1}($ as $M \in T)$. As $m=\inf T$, there exists an x_{1}^{*} such that $\left(x_{1}^{*}, 0\right) \succeq(0, m-\varepsilon)$, but by quasi linearity $\left(x_{1}^{*}+1,0\right) \succeq(1, m-\varepsilon)$ a contradiction Next assume that $m \notin T$. Then $\left(x_{1}^{*}, 0\right) \sim(0, m)$ for some x_{1}^{*}, and by monotonicity $\left(x_{1}^{*}+1,0\right) \succ(0, m)$. By continuity there exists an $\varepsilon>0$ such that $\left(x_{1}^{*}+1,0\right) \succ\left(0, x_{2}\right)$ for any $m+\varepsilon>x_{2}>m$ meaning that such x_{2} are not in T and so $m \neq \inf T$
Thus, by the standard argument, we can set
$v\left(x_{2}\right)=\inf \left(x_{1} \mid\left(x_{1}, 0\right) \succeq\left(0, x_{2}\right)\right)$. We have just show that this set is non-empty, and by continuity we know that this implies that $\left(v\left(x_{2}\right), 0\right) \sim\left(0, x_{2}\right)$

Quasi Linear Preferences

Proof.
[Proof (of Claim)] We want to show that $x_{1}+v\left(x_{2}, \ldots x_{k}\right)$ represents \succeq. Note that for any x

$$
\begin{aligned}
\left(0, x_{1}, \ldots x_{k}\right) & \sim\left(v\left(x_{2}, \ldots, x_{k}\right), 0, \ldots 0\right) \Rightarrow \\
\left(x_{1}+v\left(x_{2}, \ldots, x_{k}\right), 0 \ldots 0\right) & \sim x(\text { by q linearity })
\end{aligned}
$$

Thus by strong monotonicity we are done

$$
\begin{aligned}
x & \succeq y \\
& \Rightarrow\left(x_{1}+v\left(x_{2}, \ldots, x_{k}\right), 0 \ldots 0\right) \succeq\left(y_{1}+v\left(y_{2}, \ldots, y_{k}\right), 0 \ldots 0\right)
\end{aligned}
$$

Kuhn Tucker Conditions

Theorem
If \succeq are strongly monotonic, convex, continuous and differentiable*, and
(1) $p x^{*}=w$
(2) for every k such that $x_{k}^{*}>0$

$$
\frac{\frac{\partial u\left(x^{*}\right)}{\partial x_{k}}}{p_{k}} \geq \frac{\frac{\partial u\left(x^{*}\right)}{\partial x_{j}}}{p_{j}}
$$

Then x^{*} is a solution to the consumer's problem

Kuhn Tucker Conditions

Proof.

Assume not, then there exists a y such that $p y \leq p x^{*}$ but $y \succ x^{*}$ Let $\mu=\frac{\frac{\partial u\left(x^{*}\right)}{\partial x_{k}}}{p_{k}}$ for all k st $x_{k}^{*}>0$ and note

$$
\begin{aligned}
0 & \geq p\left(y-x^{*}\right) \\
& =\sum_{k} p^{k}\left(y_{k}-x_{k}^{*}\right) \\
& \geq \sum_{k} \frac{\partial u\left(x^{*}\right)}{\partial x_{k}} \frac{\left(y_{k}-x_{k}^{*}\right)}{\mu}
\end{aligned}
$$

This follows from the fact that if $x_{k}^{*}>0$ then $p^{k}=\frac{\partial u\left(x^{*}\right)}{\partial x_{k}} / \mu$, and if not $\left(y_{k}-x_{k}^{*}\right) \geq 0$ and $p^{k} \geq \frac{\partial u\left(x^{*}\right)}{\partial x_{k}} / \mu$
Thus

$$
0 \geq \nabla u\left(x^{*}\right)\left(y-x^{*}\right)
$$

Kuhn Tucker Conditions

Proof.

But the fact that $y \succ x^{*}$, along with strong monotonicity, continuity, and convexity means that

$$
\lambda x^{*}+(1-\lambda) y \succ x^{*}
$$

(see Rubinstein)
Thus $\left(y-x^{*}\right)$ is an improving direction - a contradiction

The Demand Function and Prices

Theorem

Let x be a rationalizable demand function that satisfies Walras' law and $I^{\prime}=p^{\prime} \times(p, I)$. Then

$$
\left[p^{\prime}-p\right]\left[x\left(p^{\prime}, I^{\prime}\right)-x(p . I)\right] \leq 0
$$

Proof.

$$
\begin{aligned}
& {\left[p^{\prime}-p\right]\left[x\left(p^{\prime}, I^{\prime}\right)-x(p . I)\right] } \\
= & p^{\prime} x\left(p^{\prime}, I^{\prime}\right)-p^{\prime} x(p . I)-p x\left(p^{\prime}, I^{\prime}\right)+p x(p . I) \\
= & I^{\prime}-I+p x(p . I)-p x\left(p^{\prime}, I^{\prime}\right)
\end{aligned}
$$

If $p x(p . I)-p x\left(p^{\prime}, I^{\prime}\right)>0$ then $x(p . I)$ strictly preferred to $x\left(p^{\prime}, I^{\prime}\right)$ But as $p^{\prime} \times(p . I)=I^{\prime} \times\left(p^{\prime}, I^{\prime}\right)$ weakly preferred to $x(p . I)$

Properties of the Indirect Utility Function

- Property 3: v is quasiconvex: i.e. the set

$$
\{(p, w) \mid v(p, w) \leq \bar{v}\}
$$

is convex for all \bar{v}
Proof.
Take p, w and p^{\prime}, w^{\prime} in the set and let $p^{\prime \prime}=\alpha p+(1-\alpha) p^{\prime}$ and $w^{\prime \prime}=\alpha w+(1-\alpha) w^{\prime}$.
NTS that $v\left(p^{\prime \prime}, w^{\prime \prime}\right) \leq \bar{v}$. Assume not. Then there exists an x st $u(x)>\bar{v}$ and

$$
\begin{aligned}
p^{\prime \prime} x & \leq w^{\prime \prime} \Rightarrow \\
\alpha p x+(1-\alpha) p^{\prime} x & \leq \alpha w+(1-\alpha) w^{\prime} \Rightarrow \\
\alpha(p x-w)+(1-\alpha)\left(p^{\prime} x-w^{\prime}\right) & \leq 0
\end{aligned}
$$

Proof.
Contradiction

Duality

Theorem
If u is monotonic and continuous then if x^{*} is a solution to the prime problem with prices p and wealth w it is a solution to the dual problem with prices p and utility $v(p, w)$

Duality

Proof.

- Assume not, then there exists a bundle \bar{x} such that

$$
u(\bar{x}) \geq v(p, w)=u\left(x^{*}\right)
$$

with

$$
\sum p_{i} \bar{x}_{i}<\sum p_{i} x_{i}^{*}=w
$$

- But this means, by monotonicity, that there exists an $\varepsilon>0$ such that, for

$$
\begin{gathered}
x^{\prime}=\left(\begin{array}{c}
\bar{x}_{1}+\varepsilon \\
\bar{x}_{2}+\varepsilon \\
\vdots \\
\bar{x}_{N}+\varepsilon
\end{array}\right) \\
\sum p_{i} x_{i}^{\prime}<w
\end{gathered}
$$

Duality

Proof.

- By monotonicity, we know that $u\left(x^{\prime}\right)>u(\bar{x}) \geq u\left(x^{*}\right)$, and so x^{*} is not a solution to the prime problem

Duality

Theorem
If u is monotonic and continuous then if x^{*} is a solution to the dual problem with prices p and utility u^{*} it is a solution to the prime problem with prices p and wealth $\sum p_{i} x_{i}^{*}$

Proof.

- Assume not, then there exists a bundle \bar{x} such that

$$
\sum p_{i} \bar{x}_{i} \leq \sum p_{i} x_{i}^{*}
$$

with

$$
u(\bar{x})>u\left(x^{*}\right) \geq u^{*}
$$

- By continuity, there exists an $\varepsilon>0$ such that, for all $x^{\prime} \in B(\bar{x}, \varepsilon), u\left(x^{\prime}\right)>u\left(x^{*}\right)$

Proof.

- In particular, there is an $\varepsilon>0$ such that

$$
x^{\prime}=\left(\begin{array}{c}
\bar{x}_{1}-\varepsilon \\
\bar{x}_{2}-\varepsilon \\
\vdots \\
\bar{x}_{N}-\varepsilon
\end{array}\right)
$$

and $u\left(x^{\prime}\right)>u\left(x^{*}\right) \geq u^{*}$

- But $\sum p_{i} x_{i}^{\prime}<\sum p_{i} \bar{x}_{i} \leq \sum p_{i} x_{i}^{*}$, so x^{*} is not a solution to the prime problem.

Properties of the Hicksian Demand Function

- Fact 3: If preferences are convex then h is a convex set. If preferences are strictly convex then h is unique
- Proof: say that x and y are both in $h(p, u)$. Then

$$
\sum p_{i} x_{i}=\sum p_{i} y_{i}=e(p, u)
$$

- Implies that for any $\alpha \in(0,1)$ and $z=\alpha x+(1-\alpha) y$

$$
\begin{aligned}
\sum p_{i} z_{i} & =\sum p_{i}\left(\alpha x_{i}+(1-\alpha) y_{i}\right) \\
& =\alpha \sum p_{i} x_{i}+(1-\alpha) \sum p_{i} y_{i} \\
& =e(p, u)
\end{aligned}
$$

- Also, as preferences are convex, $z \succeq x$, and so
$u(z) \geq u(x)=u$
- If preferences are strictly convex, then $z \succ x$
- But, by continuity, exists $\varepsilon>0$ such that $z^{\prime} \succ x$ all $z^{\prime} \in B(x, \varepsilon)$
- Implies that there is a z^{\prime} such that $u\left(z^{\prime}\right)>u$ and $\sum p_{i} z_{i}<\sum p_{i} x_{i}$

Properties of the Expenditure Function

- Fact 4: e is concave in p
- Proof: fix a \bar{u}. we need to show that

$$
e\left(p^{\prime \prime}, \bar{u}\right) \geq \alpha e(p, \bar{u})+(1-\alpha) e\left(p^{\prime}, \bar{u}\right)
$$

where

$$
p^{\prime \prime}=\alpha p+(1-\alpha) p^{\prime}
$$

- Let $x^{\prime \prime} \in h\left(p^{\prime \prime}, \bar{u}\right)$, then

$$
\begin{aligned}
e\left(p^{\prime \prime}, \bar{u}\right) & =\sum p_{i}^{\prime \prime} x_{i}^{\prime \prime} \\
& =\sum\left(\alpha p_{i}+(1-\alpha) p_{i}^{\prime}\right) x_{i}^{\prime \prime} \\
& =\alpha \sum p_{i} x_{i}^{\prime \prime}+(1-\alpha) \sum p_{i}^{\prime} x_{i}^{\prime \prime} \\
& \geq \alpha \sum p_{i} x_{i}+(1-\alpha) \sum p_{i}^{\prime} x_{i}^{\prime} \\
& =\alpha e(p, \bar{u})+(1-\alpha) e^{\prime}(p, \bar{u})
\end{aligned}
$$

where $x \in h(p, \bar{u})$ and $x^{\prime} \in h\left(p^{\prime}, \bar{u}\right)$

