Microeconomic Analysis

Mark Dean

Homework 4

Due Thursday 11th October

Question 1 Here are four commonly used utility function for the case of two commodities

- Cobb-Douglas: $u(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$ for $\alpha > 0$ and $\beta > 0$
- Constant Elasticity of Substitution: $u(x_1, x_2) = (x_1^{\rho} + x_2^{\rho})^{\frac{1}{\rho}}$ for $\rho \in \mathbb{R}$
- Linear: $u(x_1, x_2) = \alpha x_1 + \beta x_2$ for $\alpha > 0$ and $\beta > 0$
- Leontief: $u(x_1, x_2) = \min(\alpha x_1, \beta x_2)$ for $\alpha > 0$ and $\beta > 0$
- 1. For each of these utility functions derive the Walrasian and Hicksian demand correspondences, the indirect utility function and the Slutsky matrix (where it is defined)
 - 2. Verify for each that the properties of the two demand functions described in the lecture notes hold. Also show in each case that x(p, w) = h(p, v(p, w))
 - 3. Show that the Walrasian and Hicksian demand functions of the CES preferences converge to those of the Linear and Leontief preferences as $\rho \to 1$ and $\rho \to \infty$ respectively. For simplicity, you can focus only on cases in which all three preferences give demand functions which are single valued
 - 4. The elasticity of substitution between two goods is given by

$$\xi_{1,2}(p,w) = \frac{p_1}{p_2} \frac{\partial x(p,w)/\partial p_2}{\partial x(p,w)/\partial p_1}$$

Provide an interpretation of the elasticity, and calculate it for each of the 4 preferences above

Question 2 Rubenstein Chapter 6, problem 3

Question 3 Assume that there are two goods and that we observe $x(p_1, p_2, w)$ at the following point

$$x(1,1,8) = \begin{cases} 4\\4 \end{cases}$$

Consider the budget set B(1, 4, 26). Identify the set of points in this budget set which are consistent with x(1, 1, 8) and the assumption of

- 1. Locally non-satiated preferences
- 2. Quasi linear preferences with respect to the first good
- 3. Quasi linear preferences with respect to the second good
- 4. Homothetic preferences
- **Question 4** This is a question which explores the type of preferences we used to construct the indirect utility function - sometimes called preferences over menus.
- Consider the following decision maker: They have a utility function u on a set of finite alternatives X. Their preferences over sets (or menus) of these alternatives (which we indicate by \geq for weak preferences) are given by the following. For any $A \in 2^X/\emptyset$, $B \in 2^X/\emptyset$

$$\begin{array}{rcl} A & \trianglerighteq & B \mbox{ if and only if} \\ \max_{x \in A} u(x) & \geq & \max_{x \in B} u(x) \end{array}$$

- 1. Show that the binary relation \geq is a preference relation
- 2. Show that it satisfies the following property: if $A \succeq B$, then $A \bowtie A \cup B$ (where \bowtie indicates indifference i.e. $A \bowtie B$ iff $A \trianglerighteq B$ and $B \trianglerighteq A$)
- 3. Show that if \succeq is a preference relation that has this property then we can find a utility function $u: X \to \mathbb{R}$ such that $A \succeq B$ if and only if $\max_{x \in A} u(x) \ge \max_{x \in B} u(x)$ (i.e. we can find a representation of the type in part 1). *Hint: in the data we have, what observation tells us that an alternative* $x \in X$ *is preferred to an alternative* $y \in X$?