# Microeconomic Analysis 1 A Gentle Introduction

Mark Dean GR6211 Fall 2018 Columbia University

#### Plan

- 1.Introduction (to the course)
- 2.Introduction (to the first topic)

#### Intro to the Course 1: What?

- 'Choice Theory'
  - Fundamental models of behavior which underlie (most) economic analysis
  - Focus on what an individual agent (e.g. consumer or firm) will choose to do given the parameters of a problem
  - Later parts of the course will think about what happens when these agents
  - We will be focusing on models in which the agent is 'rational'
     But we will think carefully about what this means as we go along
- Four main topics
  - 1. Choice, Utility and Preferences (c. 6 lectures) 2. Consumer Theory (c. 2 lectures)
  - 3. Producer Theory (c. 2 lectures)
  - 4. Choice under Uncertainty (c. 2 lectures)

Intro to the Course 1: Why?

- There are four main reasons to take this course
  - Other than the fact you have to
- 1. Some of you will end up doing research in related areas, and this is your introduction
  - Consumer theory, decision theory, industrial organization, behavioral
- 2. Almost all of you will end up using the models that we will learn
  - Worth spending some time understanding their properties
- 3. You will use what you learn in this class in others in your first year
- 4. Introduction to the type of rigorous thinking required by economic theorists
  - Or at least it was for me!

# Intro to the Course 1: Where, When, How, etc?

• See syllabus!

## Introduction to the First Topic

- In the first 5 lectures or so we are going to talk about the relationship between
  - Two fundamental models of economic behavior
  - · Utility maximization
  - Preference maximization
  - And the data they are designed to explain
- What I want to get across in this introduction is an idea of why there is anything of interest here
  - i.e. why are we going to have to study this for 5 lectures?
- Surely utility maximization is fairly straightforward? This introduction is going to be very 'light'
  - So relax!

## **Utility Maximization**

- The model of utility maximization is probably the most pervasive in all of economics
- I am sure you have come across it
- The question I want to ask today is: how can we test it?
  - i.e. if I observe someone's behavior, how can I tell if they are in fact a utility maximizer
  - Equivalently, what predictions about behavior does the model of utility maximization make?

## Testing Utility Maximization

- In order to understand how to test the model of utility maximization (or indeed any model) we need two elements
- 1. The data we are going to use
- 2. A precise description of the model

#### The Data

- We observe:
  - The choices someone makes
  - What they were choosing from
- Example: choices from different sets of snack foods

| Available Snacks           | Chosen Snack |
|----------------------------|--------------|
| Jaffa Cakes, Kit Kat       | Jaffa Cakes  |
| Kit Kat, Lays              | Kit Kat      |
| Lays, Jaffa Cakes          | Jaffa Cakes  |
| Kit Kat, Jaffa Cakes, Lays | Jaffa Cakes  |
|                            |              |

The Model

- We want to test the model of utility maximization
- Every object has a fixed utility value attached to it
- For example:
  - U(jaffa cakes)=10
  - U(kit kat) =5
  - U(lays)=2
- In any choice set, choose the object with highest utility

### The Question

- Is our data set consistent with the model of utility maximization?
- Problem: Our model contains 'unobservables'
  - We do not observe utilities
  - Kit Kats do not come with utility numbers stamped on
  - Model says that people maximize utility, but as the experimenter I do not observe utility
- How can we proceed?

## Approach 1

- Pick a particular utility function
- e.g. utility=calories
- Test whether this utility function can explain the data
- e.g. Do people pick the option with the most calories?
- This is now a testable prediction
- And this is indeed how early economists proceeded
- Bentham: Felicific Calculus
- Proposed a classification of 12 pains and 14 pleasures, by which we
- might test the "happiness factor" of any action
   Problem: What does failure tell us?
  - Perhaps people do not maximize utility
  - Or perhaps utility is not equal to calories
  - Maybe Bentham overlooked a pleasure!

## Approach 2

- Ask the question: Is there ANY utility function that can explain the data?
- i.e. we are agnostic about what utility is
- We require only that the person behaves as if they have some consistent utility function that they are using to make their choices
- Note that this is what is sometimes referred to as 'as if' modelling
  - We don't observe utility directly
  - Only ask that we can find some utility function that explains choices
  - Subject behaves 'as if' they are maximizing utility
  - But they might be doing something completely different

13

### Aisha's Choices

| Choice | Available Snacks           | Chosen Snack |
|--------|----------------------------|--------------|
| 1      | Jaffa Cakes, Kit Kat       | Jaffa Cakes  |
| 2      | Kit Kat, Lays              | Kit Kat      |
| 3      | Lays, Jaffa Cakes          | Lays         |
| 4      | Kit Kat, Jaffa Cakes, Lays | Jaffa Cakes  |

- Is there any utility function that can explain Aisha's choices
- No!
  - Choice 1 implies u(jaffa cake)>u(kit kat)
  - Choice 2 implies u(kit kat)>u(lays)
  - Choice 3 implies u(lays)>u(jaffa cakes)
- Implies u(jaffa cake)>u(jaffa cake): Contradiction

1.0

# Brittney's Choices

| Choice | Available Snacks           | Chosen Snack |
|--------|----------------------------|--------------|
| 1      | Jaffa Cakes, Kit Kat       | Jaffa Cakes  |
| 2      | Kit Kat, Lays              | Kit Kat      |
| 3      | Lays, Jaffa Cakes          | Jaffa Cakes  |
| 4      | Kit Kat, Jaffa Cakes, Lays | Kit Kat      |

- What about Brittney's Choices?
- No
  - Choice 1 implies u(jaffa cake)>u(kit kat)
  - Choice 4 implies u(kit kat)>u(jaffa cakes)
- Contradiction

15

### Colvin's Choices

| Choice | Available Snacks           | Chosen Snack |
|--------|----------------------------|--------------|
| 1      | Jaffa Cakes, Kit Kat       | Jaffa Cakes  |
| 2      | Kit Kat, Lays              | Kit Kat      |
| 3      | Lays, Jaffa Cakes          | Jaffa Cakes  |
| 4      | Kit Kat. Jaffa Cakes, Lavs | Jaffa Cakes  |

- How about Colvin's Choices?
- Yes!
- u(jaffa cakes)>u(kit kat)>u(lays)
- Eg
  - u(jaffa cakes)=3
  - u(kit kat)=2
  - U(lays)=1

11

### A General Rule

 Question: Is there a general rule that differentiates data sets that can be explained by some utility function from those that can't?

17

### A General Rule

 Question: Is there a general rule that differentiates data sets that can be explained by some utility function from those that can't?

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B

18









| Choice | Available Snacks                    | Chosen Snack        |
|--------|-------------------------------------|---------------------|
| 2      | Jaffa Cakes, Kit Kat                | Jaffa Cakes         |
| 3      | Kit Kat, Lays<br>Lays, Jaffa Cakes  | Kit Kat             |
| 4      | Kit Kat, Jaffa Cakes, Lays          | Lays<br>Jaffa Cakes |
|        | akes chosen in set 4 hosen in set 3 |                     |

| Choice Av | ilable Snacks                                           | Chosen Snack |
|-----------|---------------------------------------------------------|--------------|
| 1 Jaf     | a Cakes, Kit Kat                                        | Jaffa Cakes  |
| 2 Kit     | Kat, Lays                                               | Kit Kat      |
| 3 Lay     | s, Jaffa Cakes                                          | Jaffa Cakes  |
| 4 Kit     | Kat, Jaffa Cakes, Lays                                  | Kit Kat      |
| it Kat ch | ed by Brittney's<br>osen in set 4<br>es chosen in set 1 | choices      |

### Colvin's Choices

| Choice | Available Snacks           | Chosen Snack |
|--------|----------------------------|--------------|
| 1      | Jaffa Cakes, Kit Kat       | Jaffa Cakes  |
| 2      | Kit Kat, Lays              | Kit Kat      |
| 3      | Lays, Jaffa Cakes          | Jaffa Cakes  |
| 4      | Kit Kat, Jaffa Cakes, Lays | Jaffa Cakes  |

- · Colvin's choices satisfy IIA
  - Jaffa cakes chosen in 4
  - Also chosen in 3 and 1

25

# A Necessary Condition

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B

- If we observe a utility maximizer, then they must satisfy IIA
  - If x is chosen from A, must have a higher utility than anything in A
  - B is a subset of A
  - X must have higher utility than anything in B
  - Should be chosen from B

# A Sufficient Condition?

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B

- Is it the case that, if IIA holds, there exists some utility function such that choices maximize utility according to that utility function?
- This would be great!
  - It means testing the condition is the same as testing the model of utility maximum
  - If the condition is satisfied then the person looks like a utility maximizer
  - If not, then they don't

27