Risk and Uncertainty 1

Mark Dean

GR6211 - Microeconomic Analysis 1

Introduction

- Up until now, we have thought of people choosing between objects
- Used cars
- Hamburgers
- Monetary amounts
- However, often the outcome of the choices that we make are not known
- You are deciding whether or not to buy a share in AIG
- You are deciding whether or not to put your student loan on black at the roulette table
- You are deciding whether or not to buy a house that straddles the San Andreas fault line
- In each case you understand what it is that you are choosing between, but you don't know the outcome of that choice
- In fact, many things can happen, you just don't know which one

Risk vs Uncertainty

- We are going to differentiate between two different ways in which the future may not be know
- Horse races
- Roulette wheels
- What is the difference?

Risk vs Uncertainty

- When playing a roulette wheel the probabilities are known
- Everyone agrees on the likelihood of black
- So we (the researcher) can treat this as something we can observe
- Probabilities are objective
- This is a situation of risk

Risk vs Uncertainty

- When betting on a horse race the probabilities are unknown
- Different people may apply different probabilities to a horse winning
- We cannot directly observe a person's beliefs
- Probabilities are subjective
- This is a situation of uncertainty (or ambiguity)

Choices Under Risk

- We will focus today on choice under risk
- Let's begin by formally defining the objects of choice
- Let X be a finite prize space with N elements
- $\Delta(X)$ the set of probability measures on X

Definition

Let X be some finite prize space, The set $\Delta(X)$ of lotteries on X is the set of all functions $p: X \rightarrow[0,1]$ such that

$$
\sum_{x \in X} p(x)=1
$$

- We will consider preferences over $\Delta(X)$

Notes

- What is the cardinality of $\Delta(X)$?
- We will often want to talk about mixtures of lotteries

$$
\begin{aligned}
r & =\alpha p+(1-\alpha) q \\
& \Rightarrow r(x)=\alpha p(x)+(1-\alpha) q(x)
\end{aligned}
$$

- In fact, many of the results that we prove will be special cases of a mathematical result called the mixture space theorem
- We will use δ_{x} to mean the degenerate lottery on prize x
- Sometimes we will abuse notation and use

$$
\alpha x+(1-\alpha) y \text { to mean } \alpha \delta_{x}+(1-\alpha) \delta_{y}
$$

Notes

- It is going to be important for our interpretation to make sense that we set up lotteries in the right way
- The only thing that can matter for preferences is the distribution of outcomes
- Consider the following Rubinstein example
- 50% probability of rain
- Two prizes $X=\{u m b r e l l a$, no umbrella $\}$
- You would not be able to tell my your preferences over a lottery over X unless you know the 'correlation' between lottery outcome and prizes'
- A lottery that gave you an umbrella in the rain and no umbrella otherwise would assign 50% probability to getting an umbrella
- So would a lottery that gave you no umbrella in the rain and umbrella otherwise
- But you would not be indifferent between the two....
- Need to redefine the prize space.....

Choices Under Risk

- So, how should you make choices under risk?
- Let's consider the following (very boring) fairground game
- You flip a coin
- If it comes down heads you get $\$ 10$
- If it comes down tails you get $\$ 0$
- What is the maximum amount x that you would pay in order to play this game?

Approach 1: Expected Value

- You have the following two options
(1) Not play the game and get $\$ 0$ for sure
(2) Play the game and get $-\$ x$ with probability 50% and $\$ 10-x$ with probability 50%
- Approach 1: Expected value
- The expected amount that you would earn from playing the game is

$$
0.5(-x)+0.5(10-x)
$$

- This is bigger than 0 if

$$
\begin{aligned}
0.5(-x)+0.5(10-x) & \geq 0 \\
5 & \geq x
\end{aligned}
$$

- Should pay at most $\$ 5$ to play the game

The St. Petersburg Paradox

- This was basically the accepted approach until Daniel Bernoulli suggested the following modification of the game
- Flip a coin
- If it comes down heads you get $\$ 2$
- If tails, flip again
- If that coin comes down heads you get $\$ 4$
- If tails, flip again
- If that comes down heads, you get $\$ 8$
- Otherwise flip again
- and so on
- How much would you pay to play this game?

The St. Petersburg Paradox

- The expected value is

$$
\begin{aligned}
& \frac{1}{2} \$ 2+\frac{1}{4} \$ 4+\frac{1}{8} \$ 8+\frac{1}{16} \$ 16+\ldots \\
= & \$ 1+\$ 1+\$ 1+\$ 1+\ldots \ldots \\
= & \infty
\end{aligned}
$$

- So you should pay an infinite amount of money to play this game
- Which is why this is the St. Petersburg paradox

The St. Petersburg Paradox

- So what is going wrong here?
- Consider the following example:

Example

Say a pauper finds a magic lottery ticket, that has a 50% chance of $\$ 1$ million and a 50% chance of nothing. A rich person offers to buy the ticket off him for $\$ 499,999$ for sure. According to our 'expected value' method', the pauper should refuse the rich person's offer!

The St. Petersburg Paradox

- It seems ridiculous (and irrational) that the pauper would reject the offer
- Why?
- Because the difference in life outcomes between $\$ 0$ and $\$ 499,999$ is massive
- Get to eat, buy clothes, etc
- Whereas the difference between $\$ 499,999$ and $\$ 1,000,000$ is relatively small
- A third pair of silk pyjamas
- Thus, by keeping the lottery, the pauper risks losing an awful lot (\$0 vs $\$ 499,999$) against gaining relatively little (\$499,999 vs $\$ 1,000,000$)

Marginal Utility

- Bernoulli argued that people should be maximizing expected utility not expected value
- $u(x)$ is the expected utility of an amount x
- Moreover, marginal utility should be decreasing
- The value of an additional dollar gets lower the more money you have
- For example

$$
\begin{aligned}
u(\$ 0) & =0 \\
u(\$ 499,999) & =10 \\
u(\$ 1,000,000) & =16
\end{aligned}
$$

Marginal Utility

- Under this scheme, the pauper should choose the rich person's offer as long as

$$
\frac{1}{2} u(\$ 1,000,000)+\frac{1}{2} u(\$ 0)<u(\$ 499,999)
$$

- Using the numbers on the previous slide, $\mathrm{LHS}=8, \mathrm{RHS}=10$
- Pauper should accept the rich persons offer
- Bernoulli suggested $u(x)=\ln (x)$
- Also explains the St. Petersberg paradox
- Using this utility function, should pay about $\$ 64$ to play the game

Risk Aversion

- Notice also that expected utility is also a more general model than expected value maximization
- The latter can be applied only to cases in which the prize space is amounts of money

Expected Utility

- Expected Utility Theory is the workhorse model of choice under risk
- Unfortunately, it is another model which has something unobservable
- The utility of every possible outcome of a lottery
- So we have to figure out how to identify its observable implications

Expected Utility

Definition

A preference relation \succeq on lotteries on some finite prize space X have an expected utility representation if there exists a function $u: X \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
p & \succeq q \text { if and only if } \\
\sum_{x \in X} p(x) u(x) & \geq \sum_{x \in X} q(x) u(x)
\end{aligned}
$$

- Notice that preferences are on $\Delta(X)$ but utility numbers are on X
- Sometimes called Bernoulli numbers

Expected Utility

- What needs to be true about preferences for us to be able to find an expected utility representation?
- An expected utility representation is still a utility representation
- So we still need \succeq to be a preference relation - i.e.
- Complete
- Transitive

Expected Utility

- Unsurprisingly, this is not enough
- We need two further axioms
(1) The Independence Axiom
(2) Continuity

The Independence Axiom

Question: Think of two different lotteries, p and q. Just for concreteness, let's say that p is a 25% chance of winning an apple and a 75% chance of winning a banana, while q is a 75% chance of winning an apple and a 25% chance of winning a banana. Say you prefer the lottery p to the lottery q. Now I offer you the following choice between option 1 and 2
(1) I flip a coin. If it comes up heads, then you get p. Otherwise you get the lottery that gives you celery for sure
(2) I flip a coin. If it comes up heads, you get q. Otherwise you get the lottery that gives you celery for sure

Which do you prefer?

The Independence Axiom

- The independence axiom (effectively) says that if you must prefer p to q you must prefer option 1 to option 2
- If I prefer p to q, I must prefer a mixture of p with another lottery to q with another lottery

The Independence Axiom $p \succeq q$ implies that, for any other lottery r and number $0<\alpha \leq 1$ then

$$
\alpha p+(1-\alpha) r \succeq \alpha q+(1-\alpha) r
$$

Notes

- Independence is often used as a normative axiom
- For example, it can be used as a decision making tool
- If you agree with it, then I can ask you some simple questions, and tell you how to behave in more complex situations
- So let's try to construct a normative argument
- We will come back to whether it is accurate descriptively later on

Notes

- Consider the following choice scenarios
(1) When choosing between lottery p and q you prefer p
(2) Say now I will first flip a coin and that with prob. α you get r, and then you have no choice to make. Otherwise, you get to choose between p and q
(3) Say now that you have to commit to a choice of p or q before the coin is flipped
(4) Finally I ask you to choose between $\alpha p+(1-\alpha) r$ and $\alpha q+(1-\alpha) r$
- We want to conclude that (1) implies you prefer $\alpha p+(1-\alpha) r$ in (4)
- $1 \Rightarrow 2$ - history independence
- $2 \Rightarrow 3$ - time consistency
- $3 \Rightarrow 4$ - reduction of compound lotteries

Notes

- Notice that, while the independence axiom may seem intuitive, that is dependent on the setting
- Maybe you prefer ice cream to gravy, but you don't prefer ice cream mixed with steak to gravy mixed with steak
- What goes wrong with the previous argument?
- Note that what independence is really buying us here is linearity in the space of lotteries

$$
x \sim y \Rightarrow \alpha x+(1-\alpha) y \sim x
$$

Notes

- Note that this rules out strict preference for randomization i.e. we cannot have

$$
x \sim y \text { and } \alpha x+(1-\alpha) y \succ x
$$

Can you think of cases in which a strict preference for randomization makes sense?

- Does this mean the utility numbers assigned to prizes have to be linear?
- No! We can have concavity in that space (or convexity)
- This is implicit in how we have defined mixing

Continuity

- The other axiom we need is more technical

The Continuity Axiom For all lotteries p, q and r such that $p \succ q \succ r$, there must exist an a and b in $(0,1)$ such that

$$
a p+(1-a) r \succ q \succ b p+(1-b) r
$$

- Do we like it?
- Can't be tested
- Basically means no prize is infinitely good and infinitely bad
- What if one prize is death, do we still think it is a good idea?

The Expected Utility Theorem

- It turns out that these two axioms, when added to the 'standard' ones, are necessary and sufficient for an expected utility representation

Theorem

Let X be a finite set of prizes and $\Delta(X)$ be the set of lotteries on X. Let \succeq be a binary relation on $\Delta(X)$. Then \succeq is complete, transitive and satisfies Independence and Continuity if and only if there exists a $u: X \rightarrow \mathbb{R}$ such that, for any $p, q \in \Delta(X)$,

$$
\begin{aligned}
p & \succeq q \\
\text { if and only if } \sum_{x \in X} p_{x} u(x) & \geq \sum_{x \in X} q_{x} u(x)
\end{aligned}
$$

The Expected Utility Theorem

- Proof?
- Necessity you can do yourself
- Sufficiency relies on two key lemmas

Lemma If \succeq is a preference relation that satisfies Independence then $p \succ q$ and $0 \leq \beta<\alpha \leq 1$ implies

$$
\alpha p+(1-\alpha) q \succ \beta p+(1-\beta) q
$$

Lemma If \succeq is a preference relation that satisfies
Independence and Continuity then $p \succeq q \succeq r$ and $p \succ r$ implies that there exists a unique α^{*} such that

$$
q \sim \alpha^{*} p+\left(1-\alpha^{*}\right) r
$$

Expected Utility Numbers

- Remember that when we talked about 'standard' utility theory, the numbers themselves didn't mean very much
- Only the order mattered
- So, for example

$$
\begin{aligned}
& u(a)=1 \quad v(a)=1 \\
& u(b)=2 \quad v(b)=4 \\
& u(c)=3 \quad v(c)=9 \\
& u(d)=4 \quad v(c)=16
\end{aligned}
$$

- Would represent the same preferences

Expected Utility Numbers

- Is the same true here?
- No!
- According to the first preferences

$$
\frac{1}{2} u(a)+\frac{1}{2} u(c)=2=u(b)
$$

and so

$$
\frac{1}{2} a+\frac{1}{2} c \sim b
$$

- But according to the second set of utilities

$$
\frac{1}{2} v(a)+\frac{1}{2} v(c)=5>v(b)
$$

and so

$$
\frac{1}{2} a+\frac{1}{2} c \succ b
$$

Expected Utility Numbers

- So we have to take utility numbers more seriously here
- Magnitudes matter
- How much more seriously?

Theorem
Let \succeq be a set of preferences on $\Delta(X)$ and $u: X \rightarrow \mathbb{R}$ form an expected utility representation of \succeq. Then $v: X \rightarrow \mathbb{R}$ also forms an expected utility representation of \succeq if and only if

$$
v(x)=a u(x)+b \forall x \in X
$$

for some $a \in \mathbb{R}_{++}, b \in \mathbb{R}$
Proof.
Homework

