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Introduction

e Up until now, we have thought of people choosing between
objects

e Used cars
e Hamburgers
e Monetary amounts

e However, often the outcome of the choices that we make are
not known

e You are deciding whether or not to buy a share in AlIG

e You are deciding whether or not to put your student loan on
black at the roulette table

e You are deciding whether or not to buy a house that straddles
the San Andreas fault line

e In each case you understand what it is that you are choosing
between, but you don’t know the outcome of that choice

e In fact, many things can happen, you just don't know which
one



Risk vs Uncertainty

e We are going to differentiate between two different ways in
which the future may not be know

e Horse races
e Roulette wheels

e What is the difference?



Risk vs Uncertainty

e When playing a roulette wheel the probabilities are known

e Everyone agrees on the likelihood of black

e So we (the researcher) can treat this as something we can
observe

e Probabilities are objective

e This is a situation of risk



Risk vs Uncertainty

e When betting on a horse race the probabilities are unknown

o Different people may apply different probabilities to a horse
winning

e We cannot directly observe a person’s beliefs

e Probabilities are subjective

e This is a situation of uncertainty (or ambiguity)



Choices Under Risk

We will focus today on choice under risk

Let's begin by formally defining the objects of choice

Let X be a finite prize space with N elements

A(X) the set of probability measures on X
Definition

Let X be some finite prize space, The set A(X) of lotteries on X is
the set of all functions p : X — [0, 1] such that

Y plx) =1

xeX

e We will consider preferences over A(X)



Notes

What is the cardinality of A(X)?

We will often want to talk about mixtures of lotteries

r = ap+(1—a)g
= r(x) =ap(x)+ (1 —a)q(x)

In fact, many of the results that we prove will be special cases
of a mathematical result called the mixture space theorem

We will use , to mean the degenerate lottery on prize x

Sometimes we will abuse notation and use

ax+ (1 —a)y to mean ady + (1 —a)d,



Notes

It is going to be important for our interpretation to make
sense that we set up lotteries in the right way

The only thing that can matter for preferences is the
distribution of outcomes

Consider the following Rubinstein example

e 50% probability of rain
o Two prizes X = {umbrella, no umbrella}

You would not be able to tell my your preferences over a
lottery over X unless you know the ‘correlation’ between
lottery outcome and prizes’

o A lottery that gave you an umbrella in the rain and no umbrella
otherwise would assign 50% probability to getting an umbrella

e So would a lottery that gave you no umbrella in the rain and
umbrella otherwise

e But you would not be indifferent between the two....

e Need to redefine the prize space.....



Choices Under Risk

e So, how should you make choices under risk?
e Let's consider the following (very boring) fairground game

e You flip a coin
e If it comes down heads you get $10
e If it comes down tails you get $0

e What is the maximum amount x that you would pay in order
to play this game?



Approach 1: Expected Value

e You have the following two options

@ Not play the game and get $0 for sure
® Play the game and get —$x with probability 50% and $10 — x
with probability 50%

e Approach 1: Expected value

e The expected amount that you would earn from playing the
game is

0.5(—x) 4+ 0.5(10 — x)
e This is bigger than 0 if

0.5(—x) +0.5(10 — x)
5

AV,

e Should pay at most $5 to play the game



The St. Petersburg Paradox

e This was basically the accepted approach until Daniel
Bernoulli suggested the following modification of the game

Flip a coin

If it comes down heads you get $2

If tails, flip again

If that coin comes down heads you get $4
If tails, flip again

If that comes down heads, you get $8
Otherwise flip again

and so on

e How much would you pay to play this game?



The St. Petersburg Paradox

e The expected value is

1 1 1 1
§$2+Z$4+§$8+E$16+...
= $14+$1+$1+%1+......

oo

e So you should pay an infinite amount of money to play this
game

e Which is why this is the St. Petersburg paradox



The St. Petersburg Paradox

e So what is going wrong here?

e Consider the following example:

Example

Say a pauper finds a magic lottery ticket, that has a 50% chance
of $1 million and a 50% chance of nothing. A rich person offers to
buy the ticket off him for $499,999 for sure. According to our
‘expected value’ method’, the pauper should refuse the rich
person's offer!



The St. Petersburg Paradox

It seems ridiculous (and irrational) that the pauper would
reject the offer

Why?
Because the difference in life outcomes between $0 and
$499,999 is massive

e Get to eat, buy clothes, etc
Whereas the difference between $499,999 and $1,000,000 is
relatively small

o A third pair of silk pyjamas
Thus, by keeping the lottery, the pauper risks losing an awful

lot ($0 vs $499,999) against gaining relatively little ($499,999
vs $1,000,000)



Marginal Utility

e Bernoulli argued that people should be maximizing expected
utility not expected value

e u(x) is the expected utility of an amount x
e Moreover, marginal utility should be decreasing

e The value of an additional dollar gets lower the more money
you have

e For example
u($0) = 0

u($499, 999) 10
u($1,000,000) = 16



Marginal Utility

e Under this scheme, the pauper should choose the rich person’s
offer as long as

%u($1, 000, 000) + %u($0) < u($499,999)

e Using the numbers on the previous slide, LHS=8, RHS=10
e Pauper should accept the rich persons offer
e Bernoulli suggested u(x) = In(x)

o Also explains the St. Petersberg paradox
e Using this utility function, should pay about $64 to play the
game



Risk Aversion

e Notice also that expected utility is also a more general model
than expected value maximization

e The latter can be applied only to cases in which the prize
space is amounts of money



Expected Utility

e Expected Utility Theory is the workhorse model of choice
under risk

e Unfortunately, it is another model which has something
unobservable

e The utility of every possible outcome of a lottery

e So we have to figure out how to identify its observable
implications



Expected Utility

Definition

A preference relation > on lotteries on some finite prize space X
have an expected utility representation if there exists a function
u: X — R such that

p >~ q if and only if
Yo p(x)u(x) = Y q(x)u(x)
xeX xeX

 Notice that preferences are on A(X) but utility numbers are
on X

e Sometimes called Bernoulli numbers



Expected Utility

e What needs to be true about preferences for us to be able to
find an expected utility representation?

e An expected utility representation is still a utility
representation

e So we still need > to be a preference relation - i.e.

e Complete
e Transitive



Expected Utility

e Unsurprisingly, this is not enough
e We need two further axioms

@ The Independence Axiom
® Continuity



The Independence Axiom

Question: Think of two different lotteries, p and g. Just for
concreteness, let's say that p is a 25% chance of
winning an apple and a 75% chance of winning a
banana, while g is a 75% chance of winning an apple
and a 25% chance of winning a banana. Say you
prefer the lottery p to the lottery g. Now | offer you
the following choice between option 1 and 2

@ | flip a coin. If it comes up heads, then you get
p. Otherwise you get the lottery that gives you
celery for sure

® | flip a coin. If it comes up heads, you get q.
Otherwise you get the lottery that gives you
celery for sure

Which do you prefer?



The Independence Axiom

e The independence axiom (effectively) says that if you must
prefer p to g you must prefer option 1 to option 2

o If | prefer p to g, | must prefer a mixture of p with another
lottery to g with another lottery

The Independence Axiom p >~ g implies that, for any other lottery
r and number 0 < & < 1 then

ap+(l—a)r=ag+ (1 —a)r



Notes

Note that the analogy | just gave isn't precise because our
world doesn’t include two stage lotteries of the type on the
previous slide

Yet independence is often used as a normative axiom

e For example, it can be used as a decision making tool
e |f you agree with it, then | can ask you some simple questions,
and tell you how to behave in more complex situations
So let's try to construct a normative argument

We will come back to whether it is accurate descriptively later
on



Notes

e Consider the following choice scenarios

® When choosing between lottery p and g you prefer p

® Say now | will first flip a coin and that with prob. & you get r,
and then you have no choice to make. Otherwise, you get to
choose between p and g

© Say now that you have to commit to a choice of p or g before
the coin is flipped

O Finally | ask you to choose between ap + (1 — a)r and
ag+ (1—a)r

e We want to conclude that (1) implies you prefer
ap+ (1 —a)rin (4)
e 1 = 2 - history independence

e 2 = 3 - time consistency
e 3 = 4 - reduction of compound lotteries



Notes

e Notice that, while the independence axiom may seem
intuitive, that is dependent on the setting

e Maybe you prefer ice cream to gravy, but you don't prefer ice
cream mixed with steak to gravy mixed with steak

e What goes wrong with the previous argument?



Notes

e Note that what independence is really buying us here is
linearity in the space of lotteries

x~y=ax+(l—a)y ~x

e One thing that this rules out strict preference for
randomization - i.e. we cannot have

x~yandax+ (1—a)y > x

Can you think of cases in which a strict preference for
randomization makes sense?

e Does this mean the utility numbers assigned to prizes have to
be linear?

e No! We can have concavity in that space (or convexity)
e This is implicit in how we have defined mixing



Continuity

e The other axiom we need is more technical

The Continuity Axiom For all lotteries p, g and r such that
p > q > r, there must exist an a and b in (0, 1) such
that

ap+ (1—a)r>q>bp+(1—b)r

e Do we like it?

Can't be tested

Basically means no prize is infinitely good and infinitely bad
What if one prize is death, do we still think it is a good idea?
Maybe - after all we still cross roads!



The Expected Utility Theorem

e |t turns out that these two axioms, when added to the

‘standard’ ones, are necessary and sufficient for an expected
utility representation

Theorem

Let X be a finite set of prizes and A(X) be the set of lotteries on
X. Let = be a binary relation on A(X). Then = is complete,
transitive and satisfies Independence and Continuity if and only if
there exists a u: X — R such that, for any p,q € A(X),

P = q
if and only if Y peu(x) > ) qeu(x)

xeX xeX



The Expected Utility Theorem

e Proof?
e Necessity you can do yourself

o Sufficiency relies on two key lemmas

Lemma If > is a preference relation that satisfies
Independence then p = g and 0 < B < a < 1 implies

ap+(1—a)g>pBp+(1—PB)q

Lemma If > is a preference relation that satisfies
Independence and Continuity then p = g > r and
p > r implies that there exists a unique a* such that

gr~a'p+(1—a")r



Expected Utility Numbers

Remember that when we talked about 'standard’ utility
theory, the numbers themselves didn't mean very much

Only the order mattered

So, for example
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Would represent the same preferences



Expected Utility Numbers

Is the same true here?
No!
According to the first preferences

1 1
Eu(a) +§u(c) =2 =u(b)
and so
L,
2T 5¢

But according to the second set of utilities

1 1
Ev(a) + EV(C) =5> v(b)

and so
L + L = b
—a+ =-c
2 2



Expected Utility Numbers

e So we have to take utility numbers more seriously here

e Magnitudes matter

e How much more seriously?

Theorem

Let = be a set of preferences on A(X) and u: X — R form an
expected utility representation of =. Then v: X — R also forms
an expected utility representation of > if and only if

v(x) =au(x)+ bV xeX

for some a € R4, b€ R
Proof.

Homework ]
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