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Risk Aversion

• We motivated EU theory by appealing to risk aversion
• Does EU imply risk aversion?
• No!
• Consider someone who has u(x) = x

• They will be risk neutral

• Consider someone who has u(x) = x2

• They will be risk loving

• So risk attitude has something to do with the shape of the
utility function



Risk Aversion

• For this section we will think about lotteries with monetary
prizes

• Let δx be the lottery that gives prize x for sure and E (p) be
the expected value of a lottery p

Definition
We say that a decision maker is risk averse if, for every lottery p

δE (p) � p

We say they are risk neutral if

δE (p) ∼ p

We say they are risk loving if

δE (p) � p



Risk Aversion

• We can say the same thing a different way

Definition
The certainty equivalence of a lottery p is the amount c such
that

δc ∼ p
The risk premium is

E (p)− c



Risk Aversion

Lemma
For a decision maker whose preferences are strictly monotonic in
money

1 They are risk averse if and only if for any p the risk premium
is weakly positive

2 They are risk neurtal if and only if for any p the risk premium
is zero

3 They are risk loving if and only if for any p the risk premium
is weakly negative



Risk Aversion and Utility Curvature

• We have made the claim that there is a link between risk
aversion and the curvature of the utility function



Risk Aversion and Utility Curvature

• We can make this statement tight

Theorem
An expected utility maximizer

1 Is risk averse if and only if u is concave

2 Is risk neutral if and only if u is linear

3 Is risk loving if and only if u is convex

Proof.
Comes straight from Jensen’s inequality: for a random variable x
and a concave function u

E (u(x)) ≤ u(E (x))



Measuring Risk Aversion

• We might want a way of measuring risk aversion from the
utility function

• Intuitively, the more ‘curvy’the utility function, the more risk
averse

• How do we measure curvature?
• The second derivative u′′(x)!
• Is this a good measure?
• No, because we can change the utility function in such a way
that we don’t change the underlying preferences, and change
u′′(x)



The Arrow Pratt Measure

• One way round this problem is to use the Arrow-Pratt
measure of absolute risk aversion

A(x) =
−u′′(x)
u′(x)

• This measure has some nice properties
1 If two utility functions represent the same preferences then
they have the same A for every x

2 It measures risk aversion in the sense that the following two
statements are equivalent

• The utility function u has a higher Arrow Pratt measure than
utility function v for every x

• Utility function u gives a higher risk premium than utility
function v for every p



The Arrow Pratt Measure

• Why is it called a measure of absolute risk aversion?
• To see this, let’s think of a function for which A(x) is constant

u(x) = 1− e−ax

• Note u′(x) = ae−ax and u′′(x) = −a2e−ax so A(x) = a
• This is a constant absolute risk aversion (CARA) utility
function



The Arrow Pratt Measure

• Claim: for CARA utility functions, adding a constant amount
to each lottery doesn’t change risk attitues

• i.e if δx � p then δx+z is preferred to a lottery p′ which adds
an amount z to each prize in p

• To see this note that

u(x) ≥ ∑
y
p(y)u(y)

1− e−ax ≥ ∑
y
p(y)

(
1− e−ay

)
⇒ 1− e−ax ≥ 1−∑

y
p(y)e−ay

e−az − e−axe−az ≥ e−az −∑
y
p(y)e−ay e−az

⇒ 1− e−a(x+z ) ≥∑
y
p(y)

(
1− e−a(y+z )

)
⇒ u(x + z) ≥∑

y
p(y)u(y + z)



Relative Risk Aversion

• Is this a sensible property?
• Maybe not
• Means that you should have the same attitude to a gamble
between winning $100 or losing $75 whether you are a student
earning $20,000 a year or a professor earning millions!

• Perhaps a more useful measure is relative risk aversion

R(x) = xA(x) = −xu
′′(x)
u′(x)



Relative Risk Aversion

• An example of a Constant Relative Risk Aversion measure is

u(x) =
x1−ρ − 1
1− ρ

• Note that u′(x) = x−ρ, u′′(x) = −ρx−ρ−1 and so R(x) = ρ

• CRRA utility functions have the property that proportional
changes in prizes don’t affect risk attitudes

• i.e if δx � p then δαx is preferred to a lottery p′ which
multiplies each prize in p by α > 0



Relative Risk Aversion

• To see this note that

u(x) ≥ ∑
y
p(y)u(y)

⇒ x1−ρ − 1
1− ρ

≥ ∑y p(y)y
1−ρ − 1

1− ρ

⇒ x1−ρ ≥∑
y
p(y)y1−ρ

⇒ α1−ρx1−ρ ≥∑
y
p(y)α1−ρy1−ρ

⇒ (αx)1−ρ − 1
1− ρ

≥ ∑y p(y) (αy)
1−ρ − 1

1− ρ

u(αx) ≥ ∑
y
p′(y)u(y)



Are People Expected Utility Maximizers?

• Because of the work we have done above, we know what the
‘behavioral signature’is of EU

• The independence axiom

• Essentially this is picking up on the fact that EU demands
preferences to be linear in probabilities

• Does this hold in experimental data?



The Common Ratio Effect

• What would you choose?
• Many people choose C1 and D2



The Common Ratio Effect



The Common Ratio Effect

• This is a violation of the independence axiom
• Why?
• Because

D1 = 0.25C1+ 0.75R

D2 = 0.25C2+ 0.75R

where R is the lottery which pays 0 for sure

• Thus independence means that

C1 � C2⇒ D1 � D2



The Common Consequence Effect

• What would you choose?
• Many people choose A1 and B2



The Common Consequence Effect



Explanations

• What do you think is going on?
• Many alternative models have been proposed in the literature

• Disappointment: Gul, Faruk, 1991. "A Theory of
Disappointment Aversion,"

• Salience: Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer,
2012. "Salience Theory of Choice Under Risk,"

• One of the most widespread and straightforward is probability
weighting



Probability Weighting

• Maybe the problem that the Allais paradox highlights is that
people do not ’believe’the probabilities that are told to them

• For example they treat a 1% probability of winning $0 as if it
is more likely than that

• ‘I am unlucky, so the bad outcome is more likely to happen to
me’

• The difference between 0% and 1% seems bigger than the
difference between 89% and 90%

• This is the idea behind the probability weighting model.



Simple Probability Weighting Model

• Approach 1: Simple probability weighting
• Let’s start with expected utility

U(p) = ∑
x∈X

p(x)u(x)

• And allow for probability weighting

V (p) = ∑
x∈X

π(p(x))u(x)

Where π is the probability weighting function

• This can explain the Allais paradox
• For example if π(0.01) = 0.05



Simple Probability Weighting Model

• However, the simple probability weighting model is not popular
• For two reasons

1 It leads to violations of stochastic dominance
2 It doesn’t really capture the idea of ‘pessimism’



Pessimism

• Think back to the Allais paradox 0
1
0

 �
 0.01
0.89
0.1


• It seems as if the 1% probability of $0 is being overweighted

• Is this just because it is a 1% probability?

• Or is it because it is a 1% probability of the worst prize
• If it is the latter, this is something that the simple probability
weighting model cannot capture

• Weights are only based on probability



Pessimism

• Consider the following two examples

Example
Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
winning $5

Example
Lottery p :49% chance of $10, 49% of winning $0, 2% chance of
losing $1000

• Would you ‘weigh’the 2% probability the same in each case?

• Arguably not
• If you were pessimistic then you might think that 2% is ‘more
likely’in the latter case than in the former

• Can’t be captured by the simple probability weighting model



Rank Dependent Utility

• Because of these two concerns, the simple probability
weighting model is rarely used

• Instead people tend to use rank dependent utility
(sometimes also called cumulative probability weighting)

• Probability weighting depends on
• The probability of a prize
• Its rank in the lottery - i.e. how many prizes are better or
worse than it

• In practice this is done by applying weights cumulatively
• Here comes the definition

• It looks scary, but don’t panic!



Rank Dependent Utility

Definition
A decision maker’s preferences � over ∆(X ) can be represented by
a rank dependant utility model if there exists a utility function
u : X → R and a cumulative probability weighting function
ψ : [0, 1]→ [0, 1] such that ψ(0) = 0 and ψ(1) = 1, such that the
function U : ∆(X )→ R represents �, where U(p) is constructed
in the following way:

1 The prizes of p are ranked x1, x2, . . . , xn such that
x1 � x2 · · · � xn

2 U(p) is determined as

U(p) = ψ(p1)u(x1) +
n

∑
i=2

(
ψ

(
i

∑
j=1
pj

)
− ψ

(
i−1
∑
k=1

pk

))
u(xi )



Rank Dependent Utility

• Let’s go through an example: for prizes 10 > 5 > 0 let p be
equal to  0.1

0.7
0.2


• How do we apply RDU?



Rank Dependent Utility

• Well, first note that there are three prizes, so we can rewrite
the expression above as

U(p) = ψ(p1)u(x1)

+ (ψ (p1 + p2)− ψ (p1)) u(x2)

+ (ψ (p1 + p2 + p3)− ψ (p1 + p2)) u(x3)

• The weight attached to the best prize is the weight of p1
• The weight attached to the second best prize is the weight on
the probability of

• Getting something at least as good as the second prize
• Minus the probability of getting something better than the
second prize

• And so on

• Notice that if ψ is the identity function this is just expected
utility



Rank Dependent Utility

• In this specific case

U(p) = ψ(p1)u(x1)

+ (ψ (p1 + p2)− ψ (p1)) u(x2)

+ (ψ (p1 + p2 + p3)− ψ (p1 + p2)) u(x3)

• Becomes

U(p) = ψ(0.1)u(10)

+ (ψ (0.8)− ψ (0.1)) u(5)

+ (ψ (1)− ψ (0.8)) u(0)



Introduction

• In the first class we drew a distinction betweem
• Circumstances of Risk (roulette wheels)
• Circumstances of Uncertainty (horse races)

• So far we have been talking about roulette wheels
• Now horse races!



Risk vs Uncertainty

• Remember the key difference between the two
• Risk: Probabilities are observable

• There are 38 slots on a roulette wheel
• Someone who places a $10 bet on number 7 has a lottery with
pays out $350 with probability 1/38 and zero otherwise

• (Yes, this is not a fair bet)

• Uncertainty: Probabilities are not observable
• Say there are 3 horses in a race
• Someone who places a $10 bet on horse A does not necessarily
have a 1/3 chance of winning

• Maybe their horse only has three legs?



Subjective Expected Utility

• If we want to model situations of uncertainty, we cannot think
about preferences over lotteries

• Because we don’t know the probabilities
• We need a different set up
• We are going to thing about acts
• What is an act?



States of the World

• First we need to define states of the world
• We will do this with an example
• Consider a race between three horses

• A(rchibald)
• B(yron)
• C(umberbach)

• What are the possible oucomes of this race?
• Excluding ties



States of the World

State Ordering
1 A, B ,C
2 A, C, B
3 B, A, C
4 B, C, A
5 C, A, B
6 C, B, A



Acts

• This is what we mean by the states of the world
• An exclusive and exhaustive list of all the possible outcomes in
a scenario

• An act is then an action which is defined by the oucome it
gives in each state of the world

• Here are two examples
• Act f : A $10 even money bet that Archibald will win
• Act g : A $10 bet at odds of 2 to 1 that Cumberbach will win



Acts

State Ordering Payoff Act f Payoff Act g
1 A, B ,C $10 -$10
2 A, C, B $10 -$10
3 B, A, C -$10 -$10
4 B, C, A -$10 -$10
5 C, A, B -$10 $20
6 C, B, A -$10 $20



Subjective Expected Utility Theory

• So, how would you choose between acts f and g?
• SEU assumes the following:

1 Figure out the probability you would associate with each state
of the world

2 Figure out the utility you would gain from each prize

3 Figure out the expected utility of each act according to those
probabilities and utilities

4 Choose the act with the highest utility



Subjective Expected Utility Theory

• So, in the above example
• Utility from f :

[π(ABC ) + π(ACB)] u(10)

+ [π(BAC ) + π(BCA)] u(−10)
+ [π(CBA) + π(CAB)] u(−10)

where π is the probability of each act

• Utility from g :

[π(ABC ) + π(ACB)] u(−10)
+ [π(BAC ) + π(BCA)] u(−10)
+ [π(CBA) + π(CAB)] u(20)



Subjective Expected Utility Theory

• Assuming utility is linear f is preferred to g if

[π(ABC ) + π(ACB)]
[π(CBA) + π(CAB)]

≥ 3
2

• Or the probability of A winning is more than 3/2 times the
probability of C winning



Subjective Expected Utility Theory

Definition
Let X be a set of prizes, Ω be a (finite) set of states of the world
and F be the resulting set of acts (i.e. F is the set of all functions
f : Ω→ X ). We say that preferences � on the set of acts F has a
subjective expected utility representation if there exists a utility
function u : X → R and probability function π : Ω→ [0, 1] such
that ∑ω∈Ω π(ω) = 1 and

f � g

⇔ ∑
ω∈Ω

π(ω)u (f (ω)) ≥ ∑
ω∈Ω

π(ω)u (g(ω))



Subjective Expected Utility Theory

• Notes
• Notice that we now have two things to recover: Utility and
preferences

• Axioms beyond the scope of this course: has been done twice -
first by Savage1 and later (using a trick to make the process a
lot simpler) by Anscombe and Aumann2

• Utility pinned down to positive affi ne transform
• Probabilities are unique

1Savage, Leonard J. 1954. The Foundations of Statistics. New York, Wiley.
2Anscombe, F. J.; Aumann, R. J. A Definition of Subjective Probability.

The Annals of Mathematical Statistics 34 (1963), no. 1, .



The Ellsberg Paradox

• Unfortunately, while simple and intuitive, SEU theory has
some problems when it comes to describing behavior

• These problems are most elegantly demostrated by the
Ellsberg paradox

• This thought experiment has sparked a whole field of decision
theory



The Ellsberg Paradox - A Reminder

• Choice 1: The ’risky bag’
• Fill a bag with 20 red and 20 black tokens
• Offer your subject the opportunity to place a $10 bet on the
color of their choice

• Then elicit the amount x such that the subject is indifferent
between playing the gamble and receiving $x for sure.

• Choice 2: The ‘ambiguous bag’
• Repeat the above experiment, but provide the subject with no
information about the number of red and black tokens

• Then elicit the amount y such that the subject is indifferent
between playing the gamble and receiving $y for sure.



The Ellsberg Paradox

• Typical finding
• x >> y
• People much prefer to bet on the risky bag

• This behavior cannot be explained by SEU?
• Why?



The Ellsberg Paradox

• What is the utility of betting on the risky bag?
• The probability of drawing a red ball is the same as the
probability of drawing a black ball at 0.5

• So whichever act you choose to bet on, the utility of the
gamble is

0.5u($10)



The Ellsberg Paradox

• What is the utility of betting on the ambiguous bag?
• Here we need to apply SEU
• What are the states of the world?

• Red ball is drawn or black ball is drawn

• What are the acts?
• Bet on red or bet on black



The Ellsberg Paradox

State r b
red 10 0
black 0 10

• How do we calculate the utility of these two acts?
• Need to decide how likely each state is
• Assign probabilities π(r) = 1− π(b)
• Note that these do not have to be 50%
• Maybe you think I like red chips!



The Ellsberg Paradox

• Utility of betting on the red outcome is therefore

π(r)u($10)

• Utility of betting on the black outcome is

π(b)u($10) = (1− π(r))u($10)

• Because you get to choose which color to bet on, the gamble
on the ambiguous urn is

max {π(r)u($10), (1− π(r))u($10)}

• is equal to 0.5u($10) if π(r) = 0.5
• otherwise is greater than 0.5u($10)
• should always (weakly) prefer to bet on the ambiguous urn
• intuition: if you can choose what to bet on, 0.5 is the worst
probability



The Ellsberg Paradox

• 61% of my last class exhibited the Ellsberg paradox

• For more details see Halevy, Yoram. "Ellsberg revisited: An
experimental study." Econometrica 75.2 (2007): 503-536.



Maxmin Expected Utility

• So, as usual, we are left needing a new model to explain
behavior

• There have been many such attempts since the Ellsberg
paradox was first described

• We will focus on ’Maxmin Expected Utility’by Gilboa and
Schmeidler3

3Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with
non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2),
pages 141-153, April.



Maxmin Expected Utility

• Maxmin expected utility has a very natural interpretation....
• The world is out to get you!

• Imagine that in the Ellsberg experiment was run by an evil and
sneaky experimenter

• After you have chosen whether to bet on red or black, they will
increase your chances of losing

• They will sneak some chips into the bag of the opposite color
to the one you bet on

• So if you bet on red they will put black chips in and visa versa



Maxmin Expected Utility

• How should we think about this?
• Rather than their being a single probability distribution, there
is a range of possible distributions

• After you chose your act, you evaluate it using the worst of
these distributions

• This is maxmin expected utility
• you maximize the minimum utility that you can get across
different probability distributions

• Has links to robust control theory in engineering
• This is basically how you design aircraft



Maxmin Expected Utility

Definition
Let X be a set of prizes, Ω be a (finite) set of states of the world
and F be the resulting set of acts (i.e. F is the set of all functions
f : Ω→ X ). We say that preferences � on the set of acts F has a
Maxmin expected utility representation if there exists a utility
function u : X → R and convex set of probability functions Π and

f � g

⇔ min
π∈Π

∑
ω∈Ω

π(ω)u (f (ω)) ≥ min
π∈Π

∑
ω∈Ω

π(ω)u (g(ω))



Maxmin Expected Utility

• Maxmin expected utility can explain the Ellsberg paradox
• Assume that u(x) = x
• Assume that you think π(r) is between 0.25 and 0.75
• Utility of betting on the risky bag is 0.5u(x) = 5
• What is the utility of betting on red from the ambiguous bag?

min
π(r )∈[0.25,0.75]

π(r)u($10) = 0.25u($10) = 2.5

• Similary, the utility from betting on black is

min
π(r )∈[0.25,0.75]

(1− π(r)) u($10) = 0.25u($10) = 2.5

• Maximal utility from betting on the ambiguous bag is lower
than that from the risky bag
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