Risk and Uncertainty - Proofs

Mark Dean

GR6211 - Microeconomic Analysis 1

Proof

Lemma If \succeq is a preference relation that satisfies Independence then $p \succ q$ and $0 \leq \beta<\alpha \leq 1$ implies

$$
\alpha p+(1-\alpha) q \succ \beta p+(1-\beta) q
$$

Proof.
By indepdendence

$$
\alpha p+(1-\alpha) q \succ \alpha q+(1-\alpha) q=q
$$

Applying independence again gives

$$
\begin{aligned}
& \alpha p+(1-\alpha) q \\
= & \left(1-\frac{\beta}{\alpha}\right)(\alpha p+(1-\alpha) q)+\frac{\beta}{\alpha}(\alpha p+(1-\alpha) q) \\
\succ & \left(1-\frac{\beta}{\alpha}\right) q+\frac{\beta}{\alpha}(\alpha p+(1-\alpha) q) \\
= & \beta p+(1-\beta) q
\end{aligned}
$$

Proof

Lemma If \succeq is a preference relation that satisfies Independence and Continuity then $p \succeq q \succeq r$ and $p \succ r$ implies that there exists a unique α^{*} such that

$$
q \sim \alpha^{*} p+\left(1-\alpha^{*}\right) r
$$

Proof.
Trivial if $p \sim q$ or $r \sim q$ so assume not. Let

$$
\hat{a}=\inf \{\alpha \mid \alpha p+(1-\alpha) r \succ q\}
$$

Note that by Continuity and the previous lemma $\hat{\alpha} \in(0,1)$
NTS that $q \sim \hat{\alpha} p+(1-\hat{\alpha}) r$

Proof

- Say

$$
p \succ q \succ \hat{\alpha} p+(1-\hat{\alpha}) r \succ r
$$

Then by continuity there exists β such that

$$
q \succ \beta p+(1-\beta)(\hat{\alpha} p+(1-\hat{\alpha}) r)
$$

By monotonicity, $\beta+(1-\beta) \hat{\alpha}>\hat{\alpha}$ is a lower bound, so $\hat{\alpha}$ is not the greatest lower bound

- Say

$$
p \succ \hat{\alpha} p+(1-\hat{\alpha}) r \succ q \succ r
$$

Then by continuity there exists β such that

$$
\beta(\hat{\alpha} p+(1-\hat{\alpha}) r)+(1-\beta) r \succ q
$$

So, as $\beta \hat{\alpha}<\hat{\alpha}$ cannot be a lower bound

- Back to main proof
- Define \unrhd on X as

$$
x \unrhd y \text { if } \delta_{x} \succeq \delta_{y}
$$

- Note that \unrhd is a preference relation (check!)
- Pick x^{*} which is \unrhd maximal and x_{*} which is \unrhd minimal
- Note it must be the case that

$$
x^{*} \succeq p \succeq x_{*} \text { all } p
$$

- Note that if $\delta_{x} \sim \delta_{y} \forall x, y \in X$ then proof is trivial (set all utilities to zero)
- Assign utilities in the following way
(1) Let $u\left(x^{*}\right)=1$
(2) Let $u\left(x_{*}\right)=0$
(3) For all other $x \in X$ let

$$
u(x)=\alpha \text { st } x \sim \alpha x^{*}+(1-\alpha) x_{*}
$$

The Expected Utility Theorem

- So now we have found utility numbers for every prize
- All we have to do is show that $p \succeq q$ if and only if $\sum_{x \in X} p_{x} u(x) \geq \sum_{x \in X} q_{x} u(x)$
- Let's do a simple example for a 4 prize case with $p=\{p(a), p(b), p(c), p(d)\}$
- assume $a=x^{*}$ and $d=x_{*}$

$$
p=\left(\begin{array}{c}
0 \\
0.25 \\
0.75 \\
0
\end{array}\right), \quad q=\left(\begin{array}{c}
0 \\
0.75 \\
0.25 \\
0
\end{array}\right)
$$

The Expected Utility Theorem

- First, notice that

$$
p=\left(\begin{array}{c}
0 \\
0.25 \\
0.75 \\
0
\end{array}\right)=0.25\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+0.75\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

- But

The Expected Utility Theorem

- But

$$
\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \sim u(b)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+(1-u(b))\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

and

$$
\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \sim u(c)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+(1-u(c))\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

The Expected Utility Theorem

$$
\begin{array}{r}
p \sim 0.25\left(u(b)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+(1-u(b))\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right) \\
\quad+0.75\left(u(c)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+(1-u(c))\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right)
\end{array}
$$

The Expected Utility Theorem

$$
\begin{aligned}
= & (0.25 u(b)+0.75 u(c))\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+ \\
& (1-0.25 u(b)-0.75 u(c))\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

The Expected Utility Theorem

- So p is indifferent to a lottery that puts probability

$$
(0.25 u(b)+0.75 u(c))
$$

on the best prize (and the remainder on the worst prize)

- But this is just the expected utility of p
- Similarly q is indfferent to a lottery that puts

$$
(0.75 u(b)+0.25 u(c))
$$

on the best prize

- But this is just the expected utility of q

The Expected Utility Theorem

- So p will be preferred to q if the expected utility of p is higher than the expected utility of q
- This is because this means that p is indifferent to a lottery which puts a higher weight on the best prize than does q
- QED (ish)

