Risk and Uncertainty - Proofs

Mark Dean

GR6211 - Microeconomic Analysis 1

Lemma If \succeq is a preference relation that satisfies Independence then $p \succ q$ and $0 \le \beta < \alpha \le 1$ implies $\alpha p + (1 - \alpha)q \succ \beta p + (1 - \beta)q$

Proof.

By indepdendence

$$\alpha p + (1 - \alpha)q > \alpha q + (1 - \alpha)q = q$$

Applying independence again gives

$$\alpha p + (1 - \alpha)q$$

$$= (1 - \frac{\beta}{\alpha})(\alpha p + (1 - \alpha)q) + \frac{\beta}{\alpha}(\alpha p + (1 - \alpha)q)$$

$$\succ (1 - \frac{\beta}{\alpha})q + \frac{\beta}{\alpha}(\alpha p + (1 - \alpha)q)$$

$$= \beta p + (1 - \beta)q$$

Lemma If \succeq is a preference relation that satisfies Independence and Continuity then $p \succeq q \succeq r$ and $p \succ r$ implies that there exists a unique α^* such that

$$q \sim \alpha^* p + (1 - \alpha^*) r$$

Proof.

Trivial if $p \sim q$ or $r \sim q$ so assume not. Let

$$\hat{a} = \inf \{ \alpha | \alpha p + (1 - \alpha)r \succ q \}$$

Note that by Continuity and the previous lemma $\hat{\alpha} \in (0,1)$ NTS that $q \sim \hat{\alpha} p + (1-\hat{\alpha})r$

Say

$$p \succ q \succ \hat{\alpha}p + (1 - \hat{\alpha})r \succ r$$

Then by continuity there exists β such that

$$q \succ \beta p + (1 - \beta) \left(\hat{\alpha} p + (1 - \hat{\alpha}) r \right)$$

By monotonicity, $\beta+(1-\beta)\hat{\alpha}>\hat{\alpha}$ is a lower bound, so $\hat{\alpha}$ is not the greatest lower bound

Say

$$p \succ \hat{\alpha}p + (1 - \hat{\alpha})r \succ q \succ r$$

Then by continuity there exists β such that

$$\beta (\hat{\alpha}p + (1-\hat{\alpha})r) + (1-\beta)r \succ q$$

So, as $\beta \hat{\alpha} < \hat{\alpha}$ cannot be a lower bound

Proof

- Back to main proof
- Define \triangleright on X as

$$x \trianglerighteq y \text{ if } \delta_x \succeq \delta_y$$

- Note that ≥ is a preference relation (check!)
- Pick x^* which is \triangleright maximal and x_* which is \triangleright minimal
- · Note it must be the case that

$$x^* \succeq p \succeq x_*$$
 all p

• Note that if $\delta_x \sim \delta_y \ \forall \ x, y \in X$ then proof is trivial (set all utilities to zero)

- Assign utilities in the following way
- **1** 1 **2 4** ···(··*) **1**
 - 1 Let $u(x^*) = 1$
 - 2 Let $u(x_*) = 0$

3 For all other
$$x \in X$$
 let

 $u(x) = \alpha \text{ st } x \sim \alpha x^* + (1 - \alpha)x_*$

- So now we have found utility numbers for every prize
- All we have to do is show that $p \succeq q$ if and only if $\sum_{x \in X} p_x u(x) \ge \sum_{x \in X} q_x u(x)$
- Let's do a simple example for a 4 prize case with $p = \{p(a), p(b), p(c), p(d)\}$
 - assume $a = x^*$ and $d = x_*$

$$p = \left(egin{array}{c} 0 \\ 0.25 \\ 0.75 \\ 0 \end{array}
ight), \quad q = \left(egin{array}{c} 0 \\ 0.75 \\ 0.25 \\ 0 \end{array}
ight)$$

First, notice that

$$p = \begin{pmatrix} 0 \\ 0.25 \\ 0.75 \\ 0 \end{pmatrix} = 0.25 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 0.75 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

But

But

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \sim u(b) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (1 - u(b)) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

and

$$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \sim u(c) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (1 - u(c)) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$p \sim 0.25 \left(u(b) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (1 - u(b)) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right)$$

$$+0.75 \left(u(c) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (1 - u(c)) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right)$$

$$= (0.25u(b) + 0.75u(c))\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + (1 - 0.25u(b) - 0.75u(c))\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

So p is indifferent to a lottery that puts probability

$$(0.25u(b) + 0.75u(c))$$

on the best prize (and the remainder on the worst prize)

- But this is just the expected utility of p
- Similarly q is indfferent to a lottery that puts

$$(0.75u(b) + 0.25u(c))$$

on the best prize

But this is just the expected utility of q

- So p will be preferred to q if the expected utility of p is higher than the expected utility of q
- This is because this means that p is indifferent to a lottery which puts a higher weight on the best prize than does q
- QED (ish)