# A Representation Theorem for Utility Maximization 

Mark Dean

GR6211 - Microeconomic Analysis 1

## Outline

(1) A Representation Theorem for Utility Maximization Data
The Model
The Conditions
(2) A Model Of Preference Maximization
(3) Representation Theorems: Proofs
(4) Uniqueness

## A Representation Theorem

- When dealing with models that have latent (or unobservable) variables (such as utility maximization) we will want to find a representation theorem
- This consists of three things
- A data set
- A model
- A set of conditions on the data which are necessary and sufficient for it to be consistent with the model
- A representation theorem tells us the observable implications of a model with unobservables
- Means testing these conditions is the same as testing the model itself


## A Representation Theorem for Utility Maximization

- We are now going to develop a representation theorem for the model of utility maximization
- This is largely just formalizing the intuition we developed on the previous slides
- It is going to lead us to introduce a new model - that of preference maximization.


## Outline

(1) A Representation Theorem for Utility Maximization Data The Model The Conditions
(2) A Model Of Preference Maximization
(3) Representation Theorems: Proofs
(4) Uniqueness

## Data

- The data we are going to use are the choices people make
- Notation:
- $X$ : Finite set of objects you might get to choose from
- $2^{X}$ : The power set of $X$ (i.e. all the subsets of $X$ )
- $\varnothing$ : The empty set
- Our data is going to take the form of a choice correspondence which tells us what the person chose from each subset of $X$


## Definition

A choice correspondence $C$ is a mapping $C: 2^{X} / \varnothing \rightarrow 2^{X} / \varnothing$ such that $C(A) \subset A$ for all $A \in 2^{X} / \varnothing$.

## Notes

- This is just a way of recording what we described previously
- For example, if we offered someone the choice of Jaffa Cakes and Kit Kats, and they chose Jaffa Cakes, we would write

$$
C(\{\text { kitkat, jaffacakes }\})=\{\text { jaffacakes }\}
$$

- $C$ is just a record of the choices made from all possible choice sets
- i.e. all sets in $2^{X}$ apart from the empty set $\varnothing$
- We insist that the DM chooses something that was actually in the data set
- i.e. $C(A) \subset A$
- Important: Choice correspondence is non-empty: something is chosen from each choice set


# Notes 

- What are some issues with this data set?


## Notes

- What are some issues with this data set?
(1) $X$ Finite
(2) Observe choices from all choice sets
(3) We allow for people to choose more than one option!
- i.e. we allow for data of the form

$$
C(\{\text { kitkat, jaffacakes,lays }\})=\{\text { jaffacakes, kitkat }\}
$$

## Notes

- What are some issues with this data set?
(1) $X$ Finite
(2) Observe choices from all choice sets
(3) We allow for people to choose more than one option!
- i.e. we allow for data of the form

$$
C(\{\text { kitkat, jaffacakes, lays }\})=\{\text { jaffacakes, kitkat }\}
$$

- Which we interpret as something like "the decision maker would be happy with either jaffa cakes or lays from this choice set"


## Notes

- What are some issues with this data set?
(1) $X$ Finite
(2) Observe choices from all choice sets
(3) We allow for people to choose more than one option!
- i.e. we allow for data of the form

$$
C(\{\text { kitkat, jaffacakes, lays }\})=\{\text { jaffacakes, kitkat }\}
$$

- Which we interpret as something like "the decision maker would be happy with either jaffa cakes or lays from this choice set"
- These assumptions make our life easier, but are undesirable
- We will relax them in later lectures


## Notes

- Also, note that we are implicitly assuming that choice only depends on the elements in $A$
- Not (for example)
- The order in which they are presented
- A reference point
- The amount of time people have to think
- etc.
- We will come back to this when we discuss some of the evidence for and against utility maximization


## Outline

(1) A Representation Theorem for Utility Maximization

## Data

The Model
The Conditions
(2) A Model Of Preference Maximization
(3) Representation Theorems: Proofs
(4) Uniqueness

## Utility Maximization

- The model we want to test is that of utility maximization


## Utility Maximization

- The model we want to test is that of utility maximization
- i.e. there exists a utility function $u: X \rightarrow \mathbb{R}$
- Such that the things that are chosen are those which maximize utility
- For every $A$

$$
C(A)=\arg \max _{x \in A} u(x)
$$

## Utility Maximization

- The model we want to test is that of utility maximization
- i.e. there exists a utility function $u: X \rightarrow \mathbb{R}$
- Such that the things that are chosen are those which maximize utility
- For every $A$

$$
C(A)=\arg \max _{x \in A} u(x)
$$

- If this is true, we say that $u$ rationalizes $C$
- If $C$ can be rationalized by some $u$ then we say it has a utility representation


## Outline

(1) A Representation Theorem for Utility Maximization Data
The Model
The Conditions
(2) A Model Of Preference Maximization
(3) Representation Theorems: Proofs
(4) Uniqueness

## Representation Theorem

- We want to know when data is consistent with utility maximization
- i.e. it has a utility representation
- So we would like to find a set of conditions on $C$ such that it has a utility representation if and only if these conditions are satisfied
- Testing these conditions is then the same as testing the model of utility maximization


## Representation Theorem

- You may remember a condition called the Weak Axiom of Revealed Preference from Intermediate Micro

$$
\text { If } x, y \in A \cap B, x \in C(A) \text { and } y \in C(B) \Rightarrow x \in C(B)
$$

## Representation Theorem

- You may remember a condition called the Weak Axiom of Revealed Preference from Intermediate Micro

$$
\text { If } x, y \in A \cap B, x \in C(A) \text { and } y \in C(B) \Rightarrow x \in C(B)
$$

- We will break WARP down into two parts


## Representation Theorem

- You may remember a condition called the Weak Axiom of Revealed Preference from Intermediate Micro

$$
\text { If } x, y \in A \cap B, x \in C(A) \text { and } y \in C(B) \Rightarrow x \in C(B)
$$

- We will break WARP down into two parts

Axiom $\alpha$ (AKA Independence of Irrelevant Alternatives) If

$$
x \in B \subseteq A \text { and } x \in C(A), \text { then } x \in C(B)
$$

## Representation Theorem

- You may remember a condition called the Weak Axiom of Revealed Preference from Intermediate Micro

$$
\text { If } x, y \in A \cap B, x \in C(A) \text { and } y \in C(B) \Rightarrow x \in C(B)
$$

- We will break WARP down into two parts

Axiom $\alpha$ (AKA Independence of Irrelevant Alternatives) If

$$
x \in B \subseteq A \text { and } x \in C(A), \text { then } x \in C(B)
$$

Axiom $\beta$ If $x, y \in C(A), A \subseteq B$ and $y \in C(B)$ then $x \in C(B)$

## Representation Theorem

- You may remember a condition called the Weak Axiom of Revealed Preference from Intermediate Micro

$$
\text { If } x, y \in A \cap B, x \in C(A) \text { and } y \in C(B) \Rightarrow x \in C(B)
$$

- We will break WARP down into two parts

Axiom $\alpha$ (AKA Independence of Irrelevant Alternatives) If

$$
x \in B \subseteq A \text { and } x \in C(A) \text {, then } x \in C(B)
$$

Axiom $\beta$ If $x, y \in C(A), A \subseteq B$ and $y \in C(B)$ then $x \in C(B)$

- You can (and will) show that $\alpha$ and $\beta$ are equivalent to WARP
- i.e. a data set satisfies $\alpha$ and $\beta$ iff it satisfies WARP
- $\alpha$ is 'from large to small'
- $\beta$ is 'from small to large'


## Representation Theorem

- You may remember a condition called the Weak Axiom of Revealed Preference from Intermediate Micro

$$
\text { If } x, y \in A \cap B, x \in C(A) \text { and } y \in C(B) \Rightarrow x \in C(B)
$$

- We will break WARP down into two parts

Axiom $\alpha$ (AKA Independence of Irrelevant Alternatives) If

$$
x \in B \subseteq A \text { and } x \in C(A), \text { then } x \in C(B)
$$

Axiom $\beta$ If $x, y \in C(A), A \subseteq B$ and $y \in C(B)$ then $x \in C(B)$

- You can (and will) show that $\alpha$ and $\beta$ are equivalent to WARP
- i.e. a data set satisfies $\alpha$ and $\beta$ iff it satisfies WARP
- $\alpha$ is 'from large to small'
- $\beta$ is 'from small to large'
- Notice we can test these conditions!
- If we have data, we can see if they are satisfied


## Representation Theorem

- These conditions form the basis of our first representation theorem

Theorem
A Choice Correspondence on a finite $X$ has a utility representation
if and only if it satisfies axioms $\alpha$ and $\beta$

## Representation Theorem

- These conditions form the basis of our first representation theorem

Theorem
A Choice Correspondence on a finite $X$ has a utility representation
if and only if it satisfies axioms $\alpha$ and $\beta$

- if: if $\alpha$ and $\beta$ are satisfied then a utility representation exists
- only if: if a utility representation exists then $\alpha$ and $\beta$ are satisfied


## Outline

(1) A Representation Theorem for Utility Maximization Data
The Model
The Conditions
(2) A Model Of Preference Maximization
(3) Representation Theorems: Proofs
(4) Uniqueness

## Representation Theorem

- We are going to prove this theorem
- Before we do so, we are going to introduce the notion of preferences, and the associated model of preference maximization
- Will explain why after we have introduced the model


## The Questionnaire

- Consider the alternatives in $X$
- e.g. Jaffa cakes, Kit kat, Lays
- Consider an exhaustive list of questions:

Do you like alternative $x$ as much as alternative $y$ ?

- If the answer is yes, then we write $x \succeq y$


## The Questionnaire

| Do you like... | Answer | We write... |
| :--- | :--- | :--- |
| $j$ as much as $j$ | yes | $j \succeq j$ |
| $k$ as much as $k$ | yes | $j \succeq j$ |
| $l$ as much as $l$ | yes | $k \succeq k$ |
| $j$ as much as $k$ | no |  |
| $k$ as much as $j$ | yes | $k \succeq j$ |
| $j$ as much as $l$ | no |  |
| $l$ as much as $j$ | yes | $I \succeq j$ |
| $k$ as much as $l$ | no |  |
| $l$ as much as $k$ | yes | $I \succeq k$ |

## The Questionnaire

- Where do these preferences come from?


## The Questionnaire

-Where do these preferences come from?

- Could be choices (we will come back to this)
- But we could ask people to express preferences over objects that we couldn't actually give them....


## The Questionnaire

-Where do these preferences come from?

- Could be choices (we will come back to this)
- But we could ask people to express preferences over objects that we couldn't actually give them....
- Note that this is slightly different from the definition Rubinstein's book


## The Questionnaire

- Technically speaking $\succeq$ is a binary relation


## Definition

Consider a set $X$ and denote by $X \times X$ its Cartesian Product. A binary relation $B$ on $X$ is a subset of $X \times X$. We write $B \subseteq X \times X$ and $x B y$ if $(x, y) \in B$.

## The Questionnaire

- Technically speaking $\succeq$ is a binary relation


## Definition

Consider a set $X$ and denote by $X \times X$ its Cartesian Product. A binary relation $B$ on $X$ is a subset of $X \times X$. We write $B \subseteq X \times X$ and $x B y$ if $(x, y) \in B$.

-     - Example: for

|  | $j$ | $k$ | $l$ |
| :--- | :--- | :--- | :--- |
| $j$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $k$ |  | $\checkmark$ | $\checkmark$ |
| $l$ |  |  | $\checkmark$ |

- is equivalent to
$j B j, k B j, k B k, I B j, I B k, I B I$


## The Questionnaire

- Technically speaking $\succeq$ is a binary relation


## Definition

Consider a set $X$ and denote by $X \times X$ its Cartesian Product. A binary relation $B$ on $X$ is a subset of $X \times X$. We write $B \subseteq X \times X$ and $x B y$ if $(x, y) \in B$.

- Example: for

|  | $j$ | $k$ | $l$ |
| :--- | :--- | :--- | :--- |
| $j$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $k$ |  | $\checkmark$ | $\checkmark$ |
| $l$ |  |  | $\checkmark$ |

- is equivalent to
$j B j, k B j, k B k, I B j, I B k, I B I$
- Examples of other binary relations
- $X=\mathbb{R}, B=\geq$
- $X=$ people in this class, $B=$ "is taller than"


## The Questionnaire

- Should we allow any possible answers to the questionnaire?
- No! Or at least we are going to rule some things out.


## The Questionnaire

- Should we allow any possible answers to the questionnaire?
- No! Or at least we are going to rule some things out.
- You cannot answer 'I don't know' or 'I like $x$ much more than $y^{\prime}$ (only yes or no answers)
- You have to answer 'yes' either to the question
- Do you like alternative $x$ as much as alternative $y$ ?
- Or
- Do you like alternative $y$ as much as alternative $x$ ?
- Coherence
- If you like $x$ as much as $y$ and $y$ as much as $z$ you must say that you like $x$ as much as $z$


## The Questionnaire

- Do these seem like sensible properties?
- First, what do we mean by 'sensible'?
- Normative vs Positive statements


## The Questionnaire

- Do these seem like sensible properties?
- First, what do we mean by 'sensible'?
- Normative vs Positive statements
- Possible issues
- Do you prefer coffee with 1 grain of sugar to 0 grains of sugar in your coffee?
- Do you prefer a sun hat to a rain coat?
- Do you prefer txuleta or oilasko for dinner?
- Aggregation:

|  | $A$ | $B$ | $C$ |
| :--- | :--- | :--- | :--- |
| 1st | j | k | l |
| 2nd | $k$ | l | j |
| 3rd | l | j | k |

- Majority rule will lead to a violation of transitivity (a Condorcet cycle)


## Preference Relations

- These restrictions mean that the binary relation $\succeq$ has certain properties
- Completeness: for every $x$ and $y$ in $X$ either $x \succeq y$ or $y \succeq x$ (or both)
- Transitivity: if $x \succeq y$ and $y \succeq z$ then $x \succeq z$
- Reflexive: $x \succeq x$


## Preference Relations

- These restrictions mean that the binary relation $\succeq$ has certain properties
- Completeness: for every $x$ and $y$ in $X$ either $x \succeq y$ or $y \succeq x$ (or both)
- Transitivity: if $x \succeq y$ and $y \succeq z$ then $x \succeq z$
- Reflexive: $x \succeq x$
- There are many other properties one can define on binary relations, for example
- Antisymmetric: $x R y R x$ implies $x=y$
- Asymmetric: If $x R y$ then not $y R x$
- Symmetry: $x R y$ implies $y R x$


## Preference Relations

- These restrictions mean that the binary relation $\succeq$ has certain properties
- Completeness: for every $x$ and $y$ in $X$ either $x \succeq y$ or $y \succeq x$ (or both)
- Transitivity: if $x \succeq y$ and $y \succeq z$ then $x \succeq z$
- Reflexive: $x \succeq x$
- There are many other properties one can define on binary relations, for example
- Antisymmetric: $x R y R x$ implies $x=y$
- Asymmetric: If $x R y$ then not $y R x$
- Symmetry: xRy implies $y R x$
- Does $\succeq$ have these properties?


## Preference Relations

- Let $X$ be a non-empty set and $R$ a binary relation on $X$


## Definition

If $R$ is transitive and reflexive then it is a preorder. If it is also antisymmetric it is a partial order. If it is also complete it is a linear order

## Definition

$(X, R)$ is a preordered set if $R$ is a preorder, a poset if $R$ is a partial order and a loset if $R$ is a linear order

## Definition

We will say $R$ is a preference relation if it is a complete preorder

- Note that some people (mainly weird decision theorists) will use preference relation to refer to a preorder


## Preference Relations

- Notice that we can use $\succeq$ to define other binary relations:
- Strict Preference

$$
x \succ y: \text { if } x \succeq y \text { but not } y \succeq x
$$

- This is called the asymmetric part of $\succeq$
- Indifference

$$
x \sim y: \text { if } x \succeq y \text { and } y \succeq x
$$

- This is called the symmetric part of $\succeq$


## Preference Relations

- Notice that we can use $\succeq$ to define other binary relations:
- Strict Preference

$$
x \succ y: \text { if } x \succeq y \text { but not } y \succeq x
$$

- This is called the asymmetric part of $\succeq$
- Indifference

$$
x \sim y: \text { if } x \succeq y \text { and } y \succeq x
$$

- This is called the symmetric part of $\succeq$
- What properties do these binary relations have?
- Complete?
- Transitive?
- Asymmetric?
- Symmetric?


## Preference Relations and Choice

- We can use preferences to form a model of choice
- We say that the complete preference relation $\succeq$ represents a choice function $C$ if, for every $A$

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

- i.e. the things that are chosen are those that are preferred to everything else in the choice set


## Preference Relations and Choice

- We can use preferences to form a model of choice
- We say that the complete preference relation $\succeq$ represents a choice function $C$ if, for every $A$

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

- i.e. the things that are chosen are those that are preferred to everything else in the choice set
- Note $\{x \in A \mid x \succeq y \forall y \in A\}$ are the $\succeq$-maximal elements in A
- If $X$ is finite can we guarantee the existence of $\succeq$-maximal elements?


## But Why?

- I hope you agree that the above concepts are well defined
- But why do we want to introduce the idea of preferences and preference maximization?


## But Why?

- I hope you agree that the above concepts are well defined
- But why do we want to introduce the idea of preferences and preference maximization?
(1) Preference maximization is in some sense a more 'honest' model
- Will come back to this, but basically preferences provide a unique representation of choice, while utility does not
(2) It is often convenient to treat preferences as data
- Preferences may in fact be the primitive
- Even if not, translation from choice to preference relatively straightforward
- When dealing with more complex models of choice, it can be easier to start with the assumption of a well behaved preference relation, the add further conditions
- Will see this when we talk about expected utility theory
(3) This trick will help us prove our representation theorem for utility maximization


## Preferences and Utility

- We can treat preferences as data and prove representation theorems of that type
- We say that a utility function $u$ represents preferences $\succeq$ if

$$
\begin{aligned}
u(x) & \geq u(y) \text { if and only if } \\
x & \succeq y
\end{aligned}
$$

## Preferences and Utility

- In fact, this is how we are going to prove our representation theorem
- If we can find
- A preference relation which represents choices
- A utility function which represents preferences
we are done!


## Preferences and Utility

- In fact, this is how we are going to prove our representation theorem
- If we can find
- A preference relation which represents choices
- A utility function which represents preferences
we are done!
- Preferences represents choices means

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

- Utility represents preferences means

$$
u(x) \geq u(y) \Longleftrightarrow x \succeq y
$$

- So

$$
\begin{aligned}
C(A) & =\{x \in A \mid u(x) \geq u(y) \text { for all } y \in A\} \\
& =\arg \max _{x \in A} u(x)
\end{aligned}
$$

## Preferences and Utility

- Thus, in order to prove that axioms $\alpha$ and $\beta$ are equivalent to utility maximization we will do the following
(1) Show that if the data satisfies $\alpha$ and $\beta$ then we can find a preference relation $\succeq$ which represents the data
(2) Show that if a binary relation is complete and transitive then we can find a utility function $u$ which represents them
(3) Show that if the data has a utility representation then it must satisfy $\alpha$ and $\beta$ (this you will do for homework)


## Outline

(1) A Representation Theorem for Utility Maximization Data
The Model
The Conditions
(2) A Model Of Preference Maximization
(3) Representation Theorems: Proofs
(4) Uniqueness

## Preferences and Choice

Theorem
Let $C$ be a choice correspondence on a set $X$. Then there exists a preference relation $\succeq$ which represents $C$ - i.e.

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

if and only if $C$ satisfies axioms $\alpha$ and $\beta$

## Preferences and Choice

## Theorem

Let $C$ be a choice correspondence on a set $X$. Then there exists a preference relation $\succeq$ which represents $C$ - i.e.

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

if and only if $C$ satisfies axioms $\alpha$ and $\beta$
Proof.
Sufficiency: (Sketch - details in class):
(1) Define candidate relation $\unrhd$ using binary choice
(2) Show that $\unrhd$ is a preference relation
(3) Show that $\unrhd$ represents choice in all choice sets

## Preferences and Choice

## Theorem

Let $C$ be a choice correspondence on a set $X$. Then there exists a preference relation $\succeq$ which represents $C$ - i.e.

$$
C(A)=\{x \in A \mid x \succeq y \text { for all } y \in A\}
$$

if and only if $C$ satisfies axioms $\alpha$ and $\beta$
Proof.
Sufficiency: (Sketch - details in class):
(1) Define candidate relation $\unrhd$ using binary choice
(2) Show that $\unrhd$ is a preference relation
(3) Show that $\unrhd$ represents choice in all choice sets

## Proof.

Necessity - Postponed for later

## Preferences and Utility

## Theorem

Let $\succeq$ be a binary relation on a finite set $X$. Then there exists a utility function $u: X \rightarrow \mathbb{R}$ which represents $\succeq:$ i.e.

$$
\begin{aligned}
u(x) & \geq u(y) \text { if and only if } \\
x & \succeq y
\end{aligned}
$$

if and only if $\succeq$ is a preference relation

## Preferences and Utility

## Theorem

Let $\succeq$ be a binary relation on a finite set $X$. Then there exists a utility function $u: X \rightarrow \mathbb{R}$ which represents $\succeq:$ i.e.

$$
\begin{aligned}
u(x) & \geq u(y) \text { if and only if } \\
x & \succeq y
\end{aligned}
$$

if and only if $\succeq$ is a preference relation
Proof.
Sufficiency: (Sketch - details in class):
(1) Proof by induction on the size of the set $X$
(2) Obviously true of $|X|=1$
(3) For $|X|=N$, remove one item $x$, and by induction let $v$ be a utility representation on $X /\{x\}$
(4) Show that we can find a number to assign to $x$ which completes a utility representation for $X$

## Preferences and Utility

- For homework you will show that if a choice correspondence has a utility representation then it must satisfy $\alpha$ and $\beta$
- Note that, with the proofs we have just done, this means that we have proved our main theorem

Theorem
A Choice Correspondence on a finite $X$ has a utility representation if and only if it satisfies axioms $\alpha$ and $\beta$

## Comments

- Now we have proved this theorem let me provide some commentary


## Comments

- Now we have proved this theorem let me provide some commentary
(1) Properly specifying alternatives:
- The following looks like a violation of $\alpha$, but is it 'irrational'?

$$
\begin{aligned}
C(\text { steak tatre, chicken, frogs legs }) & =\text { steak tatre } \\
C(\text { steak tatre, chicken }) & =\text { chicken }
\end{aligned}
$$

## Comments

- Now we have proved this theorem let me provide some commentary
(1) Properly specifying alternatives:
- The following looks like a violation of $\alpha$, but is it 'irrational'?

$$
\begin{aligned}
C(\text { steak tatre, chicken, frogs legs }) & =\text { steak tatre } \\
C(\text { steak tatre, chicken, }) & =\text { chicken }
\end{aligned}
$$

(2) Do not over interpret

- If someone's choices satisfy WARP, does this mean that they are maximizing utility?


## Comments

- Now we have proved this theorem let me provide some commentary
(1) Properly specifying alternatives:
- The following looks like a violation of $\alpha$, but is it 'irrational'?

$$
\begin{aligned}
C(\text { steak tatre, chicken, frogs legs }) & =\text { steak tatre } \\
C(\text { steak tatre, chicken, }) & =\text { chicken }
\end{aligned}
$$

(2) Do not over interpret

- If someone's choices satisfy WARP, does this mean that they are maximizing utility?
(3) What are the advantages of providing the representation theorem?
- Testability
- Providing an understanding of the model
- Allow us to compare different models more easily
- Question: Are all axioms testable?


## Outline

(1) A Representation Theorem for Utility Maximization Data
The Model
The Conditions
(2) A Model Of Preference Maximization
(3) Representation Theorems: Proofs
(4) Uniqueness

## How Unique is Our Utility Function?

- We now know that if $\alpha$ and $\beta$ are satisfied, we can find some utility function that will explain choices
- Is it the only one?


## How Unique is Our Utility Function?

| Croft's Choices |  |
| :--- | :--- |
| Available Snacks | Chosen Snack |
| Jaffa Cakes, Kit Kat | Jaffa Cakes |
| Kit Kat, Lays | Kit Kat |
| Lays, Jaffa Cakes | Jaffa Cakes |
| Kit Kat, Jaffa Cakes, Lays | Jaffa Cakes |

- These choices could be explained by $u(J)=3, u(K)=2$, $u(L)=1$


## How Unique is Our Utility Function?

| Croft's Choices |  |
| :--- | :--- |
| Available Snacks | Chosen Snack |
| Jaffa Cakes, Kit Kat | Jaffa Cakes |
| Kit Kat, Lays | Kit Kat |
| Lays, Jaffa Cakes | Jaffa Cakes |
| Kit Kat, Jaffa Cakes, Lays | Jaffa Cakes |

- These choices could be explained by $u(J)=3, u(K)=2$, $u(L)=1$
-What about $u(J)=100000, u(K)=-1, u(L)=-2$ ?


## How Unique is Our Utility Function?

| Croft's Choices |  |
| :--- | :--- |
| Available Snacks | Chosen Snack |
| Jaffa Cakes, Kit Kat | Jaffa Cakes |
| Kit Kat, Lays | Kit Kat |
| Lays, Jaffa Cakes | Jaffa Cakes |
| Kit Kat, Jaffa Cakes, Lays | Jaffa Cakes |

- These choices could be explained by $u(J)=3, u(K)=2$, $u(L)=1$
- What about $u(J)=100000, u(K)=-1, u(L)=-2$ ?
- $\operatorname{Or} u(J)=1, u(K)=0.9999, u(L)=0.998$ ?


## How Unique is Our Utility Function?

- In fact, if a data set obeys $\alpha$ and $\beta$ there will be many utility functions which will rationalize the data


## How Unique is Our Utility Function?

- In fact, if a data set obeys $\alpha$ and $\beta$ there will be many utility functions which will rationalize the data

Theorem
Let $u: X \rightarrow \mathbb{R}$ be a utility representation for a Choice
Correspondence $C$. Then $v: X \rightarrow \mathbb{R}$ will also represent $C$ if and only if there is a strictly increasing function $T$ such that

$$
v(x)=T(u(x)) \forall x \in X
$$

- Strictly increasing function means that if you plug in a bigger number you get a bigger number out


## How Unique is Our Utility Function?

| Snack | $u$ | $v$ | $w$ |
| :--- | :---: | :---: | :---: |
| Jaffa Cake | 3 | 100 | 4 |
| Kit Kat | 2 | 10 | 2 |
| Lays | 1 | -100 | 3 |

## How Unique is Our Utility Function?

| Snack | $u$ | $v$ | $w$ |
| :--- | :---: | :---: | :---: |
| Jaffa Cake | 3 | 100 | 4 |
| Kit Kat | 2 | 10 | 2 |
| Lays | 1 | -100 | 3 |

- $v$ is a strictly increasing transform on $u$, and so represents the same choices


## How Unique is Our Utility Function?

| Snack | $u$ | $v$ | $w$ |
| :--- | :---: | :---: | :---: |
| Jaffa Cake | 3 | 100 | 4 |
| Kit Kat | 2 | 10 | 2 |
| Lays | 1 | -100 | 3 |

- $v$ is a strictly increasing transform on $u$, and so represents the same choices
- $w$ is not, and so doesn't
- For example think of the choice set $\{k, l\}$
- $u$ says they should choose kit cat
- $w$ says they should choose lays


## Why Does This Matter?

- It is important that we know how much the data can tell us about utility
- This is equivalent to figuring out identification in econometrics
- How well does our data identify utility?
- For example, our results tell us that there is a point in designing a test to tell whether people maximize utility
- But there is no point in designing a test to see whether the utility of Kit Kats is twice that of Lays
- Assuming $\alpha$ and $\beta$ is satisfied, we can always find a utility function for which this is true
- And another one for which this is false!


## Why Does This Matter?

- It is important that we know how much the data can tell us about utility
- This is equivalent to figuring out identification in econometrics
- How well does our data identify utility?
- For example, our results tell us that there is a point in designing a test to tell whether people maximize utility
- But there is no point in designing a test to see whether the utility of Kit Kats is twice that of Lays
- Assuming $\alpha$ and $\beta$ is satisfied, we can always find a utility function for which this is true
- And another one for which this is false!
- We can use choices to help us determine that the utility of Kit Kats is higher than the utility of Lays
- But nothing in our data tells us how much higher is the utility of Kit Kats


## Why Does This Matter?

- Question: what is the equivalent uniqueness statement for the model of preference maximization?

