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Representation Theorem

• We have now proved the following theorem

Theorem
A Choice Correspondence on a finite X has a utility representation
if and only if it satisfies axioms α and β

• Great! We know how to test the model of utility
maximization!

• However, our theorem is only as useful as the data set we are
working with

• As discussed at the time, there are some problems with the
data we have assumed so far
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Problems with the Data Set

• What are some issues with this data set?

1 Observe choices from all choice sets

2 We allow for people to choose more than one option

• i.e. we allow for data of the form

C ({kitkat, jaffacakes, lays}) = {jaffacakes, kitkat}

3 X Finite



Outline

1 What if X is not Finite?

2 What if we don’t Observe Choices from all Choice Sets?

3 What if we don’t Observe a Choice Correspondence?



What if X is not Finite?

• So far we have assumed that the set of available alternatives
is finite

Theorem
A Choice Correspondence on a finite X has a utility representation
if and only if it satisfies axioms α and β

• However, this may be limiting
• Choice from lotteries
• Choice from budget sets

• Can we drop the word ‘finite’from the above theorem?
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What if X is not Finite?

• Remember we proved the theorem in three steps

1 Show that if the data satisfies α and β then we can find a
complete, transitive, reflexive preference relation � which
represents the data

2 Show that if the preferences are complete, transitive and
reflexive then we can find a utility function u which represents
them

3 Show that if the data has a utility representation then it must
satisfy α and β

• Where did we make use of finiteness?
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What if X is not Finite?

• In fact the problems relating choice to preference
maximization are relatively minor

• The main issue here is that, if we want to define choice on all
subsets of X we cannot guarantee that

C (A) = {x ∈ A|x � y for all y ∈ A}

is well defined

• Example?

• But we can get round this relatively easily
• For example by demanding that we only observe choices from
finite subsets of X

• Even if X itself is not finite
• As we shall see later we may be able to do better than this
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What if X is not Finite?

• What about the relationship between preference and utility?
• Here in the proof we made heavy use of finiteness

• Induction

• Are we in trouble?

• Just because we made use of the fact that X was finite in
that particular proof doesn’t mean that it is necessary for the
statement to be true

• Maybe we will be lucky and the statement remains true for
arbitrary X ....

• Sadly not
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Infinity!

• Some definitions you should know

Definition
The natural, or counting numbers, denoted by N, are the set of
numbers {1, 2, 3, ......}
Definition
The integers, denoted by Z, are the set of numbers
{...,−3,−2,−1, 0, 1, 2, 3, ..}
Definition
The rational numbers, denoted by Q, are the set of numbers

Q =
{ a
b
|a ∈ Z, b ∈N

}

Definition
A set is countably infinite if there is a bijection between that set
and the natural numbers
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Infinity!

• Here are some properties of Q and R.

1 Q is countable

2 R is uncountable

3 For every a, b ∈ R such that a < b, there exists a c ∈ Q such
a < c < b (i.e. Q is dense in R)



Lexicographic Preferences

Definition
Let � be a binary relation on R× {1, 2} such that

{a, b} � {c, d} iff
(i) a > c

or (ii) a = c and b ≥ d

You should check that you agree that � is a complete preference
relation.

Fact
There is no utility function that rationalizes �.



Utility Representation with Non-Finite X

• So what can we do in order to ensure that preferences have a
utility representation?

• First things first: how big is the problem?
• The counter example above made use of the fact that X was
uncountable

• Does this mean the problem goes away if X is countably
finite?

• It turns out the answer is yes



Utility Representation with Countable X

Theorem
If a relation � on a countable X is complete, transitive and
reflexive then there exists a utility function u : X → R which
represents �, i.e.

u(x) ≥ u(y)⇐⇒ x � y



Utility Representation with Uncountable X

• We know from the example of lexicographic preferences that
we cannot replace ‘countable’with ‘any’X in the previous
theorem

• In order to guarantee that we have a utility representation of a
preference relation on an uncountable X we need another
condition



Continuity

• One way to go is to insist that preferences are continuous
• Broadly speaking, this means that if we change the items a
little bit the preferences also change only a little bit

• i.e. they don’t ‘jump’

Definition
We say that a preference relation � on a metric space X is
continuous if, for any x , y ∈ X such that x � y , there exists an
ε > 0 such that, for any x ′ ∈ B(x , ε) and y ′ ∈ B(y , ε), x ′ � y ′

• Examples of preferences that are not continuous?
• I like to drink a bottle of wine in the evenings. If I cannot drink
a full bottle then I would prefer not to drink

• Lexicographic preferences
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Continuity

• An alternative characterization of continuity:

Lemma
A preference relation � on a metric space X is continuous if and
only if, for every x , y ∈ X and sequence {xn, yn} such that xn → x
and yn → y then xn � ym ∀ n implies x � y
• i.e. the graph of � is closed

• You will prove for homework that these two definitions are
equivalent



Continuity

• One thing that is relatively easy to prove is that continuity of
utility implies continuity of preference

Theorem
If a preference relation � can be represented by a continuous
utility function then it is continuous



Debreu’s Theorem

• One of the most famous theorems in mathematical social
sciences is that continuity guarantees the existence of a
continuous utility representation

Theorem (Debreu)
Let X be a separable metric space, and � be a complete
preference relation on X . If � is continuous, then it can be
represented by a continuous utility function.

• Proving this in all its glory is beyond us, so we are going to
prove something weaker

Theorem
Let X be a convex subset of Rn and � be a complete preference
relation on X . If � is continuous, then it can be represented by a
utility function.
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Back to Choice

• So now we have a method of dealing with utility and
preferences in uncountable domains

• What about choice?
• Here we now have two issues

1 We need to guarantee that maximal elements exist in all
choice sets

2 We would like to make sure the preferences that represent
choices are continuous



Back to Choice

• To deal with problem 1 we will restrict ourselves to compact
subsets of X

• Notice that if we can guarantee continuous preferences then
this solves the first problem

• Continuous preferences are equivalent to continuous utility
functions

• Continuous functions on compact sets obtain their maximum

• So how can we guarantee choice can be represented by
continuous preferences?

• We would like choices to be continuous!
• Choice sets that are ‘close’to each other give rise to ‘similar’
choices
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The Hausdorff Metric

• How can we make this formal?

• We need a metric on sets!

Definition (The Hausdorff metric)
Let (X , d) be a metric space, and cb(X ) be the set of all closed
and bounded subsets of X . We will define the metric space
(cb(X ), dh), where dh is the Hausdorff metric induced by d , and is
defined as follows: For any A,B ∈ cb(X ), define Λ(A,B) as
supx∈A d(x ,B). Now define

dH (A,B) = max {Λ(A,B),Λ(B,A)}
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The Hausdorff Metric

• We can use this to define a continuous choice
correspondence

Definition
Let X be a compact metric space and ΩX be the set of all closed
subsets of X and C : ΩX → 2X be a choice correspondence. If
Sm → S for Sm , S ∈ ΩX , xm ∈ C (Sm) ∀ m and xm → x , implies
that x ∈ C (S), then we say C is continuous.

• It turns out that continuity, plus α and β, is enough to give us
our desired results

Theorem
Let X be a compact metric space and ΩX be the set of all closed
subsets of X and C : ΩX → 2X be a choice correspondence. C
satisfies properties α , β and continuity if and only if there is a
complete, continuous preference relation � on X that rationalizes
C .
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Choices from all Choice Sets?

• Imagine running an experiment to try and test α and β

• The data that we need is the choice correspondence

C : 2X /∅→ 2X /∅

• How many choices would we have to observe?
• Lets say |X | = 10

• Need to observe choices from every A ∈ 2X /∅
• How big is the power set of X ?
• If |X | = 10 need to observe 1024 choices
• If |X | = 20 need to observe 1048576 choices

• This is not going to work!



Choices from all Choice Sets?

• So how about we forget about the requirement that we
observe choices from all choice sets

• Are α and β still enough to guarantee a utility representation?

C ({x , y}) = {x}
C ({y , z}) = {y}
C ({x , z}) = {z}

• If this is our only data then there is no violation of α or β

• But no utility representation exists!
• We need a different approach!
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A Diversion into Order Theory

• In order to do this we are going to have to know a few more
things about order theory (the study of binary relations)

• In particular we are going to need some definitions

Definition
A transitive closure of a binary relation R is a binary relation T (R)
that is the smallest transitive binary relation that contains R.

• i.e. T (R) is
• Transitive
• Contains R in the sense that xRy implies xT (R)y
• Any binary relation that is smaller (in the subset sense) is
either intransitive or does not contain R

• Example?
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A Diversion into Order Theory

• We can alternatively define the transitive closure of a binary
relation R on X as the following:

Remark

• 1 Define R0 = R
2 Define Rm as xRmy if there exists z1, ..., zm ∈ X such that
xRz1R...RzmRy

3 T = R ∪i∈N Rm



A Diversion into Order Theory

Definition
Let � be a preorder on X . An extension of � is a preorder D
such that

� ⊂D
� ⊂B

Where

• � is the asymmetric part of �, so x � y if x � y but not
y � x

• B is the asymmetric part of D, so x B y if x D y but not
y D x

• Example?
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A Diversion into Order Theory

• We are also going to need one theorem

Theorem (Sziplrajn)
For any nonempty set X and preorder � on X there exists a
complete preorder that is an extension of �

• Relatively easy to prove if X is finite, but also true for any
arbitrary X
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Revealed Preference

• Okay, back to choice
• The approach we are going to take is as follows:

• Imagine that the model of preference maximization is correct
• What observations in our data would lead us to conclude that
x was preferred to y?



Revealed Preference

• We say that x is directly revealed preferred to y (xRDy) if,
for some choice set A

y ∈ A

x ∈ C (A)

• We say that x is revealed preferred to y (xRy) if we can
find a set of alternatives w1, w2, ....wn such that

• x is directly revealed preferred to w1
• w1 is directly revealed preferred to w2
• ...
• wn−1 is directly revealed preferred to wn
• wn is directly revealed preferred to y

• I.e. R is the transitive closure of RD
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Revealed Preference

• We say x is strictly revealed preferred to y (xSy) if, for
some choice set A

y ∈ A but not y ∈ C (A)
x ∈ C (A)



Notes

• Is it always true that choosing x over y means that you prefer
x to y?

• Almost certainly not
• Think of a model of ‘consideration sets’

• Only true in the context of the model of preference
maximization
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The Generalized Axiom of Revealed Preference

• Note that we can observe revealed preference and strict
revealed preference from the data

• With these definitions we can write an axiom to replace α and
β

• What behavior is ruled out by utility maximization?

Definition
A choice correspondence C satisfies the Generalized Axiom of
Revealed Preference (GARP) if it is never the case that x is
revealed preferred to y , and y is strictly revealed preferred to x

• i.e. xRy implies not ySx
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The Generalized Axiom of Revealed Preference

Theorem
A choice correspondence C on an arbitrary subset of 2X /�
satisfies GARP if and only if it has a preference representation

Corollary
A choice correspondence C on an arbitrary subset of 2X /� with X
finite satisfies GARP if and only if it has a utility representation



The Generalized Axiom of Revealed Preference

Theorem
A choice correspondence C on an arbitrary subset of 2X /�
satisfies GARP if and only if it has a preference representation

Corollary
A choice correspondence C on an arbitrary subset of 2X /� with X
finite satisfies GARP if and only if it has a utility representation



Choices from all Choice Sets?

• Note that this data set violates GARP

C ({x , y}) = {x}
C ({y , z}) = {y}
C ({x , z}) = {z}

• xRDy and yRD z so xRz
• But zSx



Outline

1 What if X is not Finite?

2 What if we don’t Observe Choices from all Choice Sets?

3 What if we don’t Observe a Choice Correspondence?



Choice Correspondence?

• Another weird thing about our data is that we assumed we
could observe a choice correspondence
• Multiple alternatives can be chosen in each choice problem

• This is not an easy thing to do!
• What about if we only get to observe a choice function?

• Only one option chosen in each choice problem

• How do we deal with indifference?



Choice Correspondence?

• One of the things we could do is assume that the decision
maker chooses one of the best options

C (A) ∈ argmax
x∈A

u(x)

• Is this going to work?

• No!
• Any data set can be represented by this model

• Why?
• We can just assume that all alternatives have the same utility!
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Choice Correspondence?

• Another thing we can do is assume away indifference

C (A) = argmax
x∈A

u(x)

• for some one-to-one function u

• Is this going to work?

• Yes
• Implies that data is a function
• Property α (or GARP) will be necessary and suffi cient (if X is
finite)

• But maybe we don’t want to rule out indifference!
• Maybe people are sometimes indifferent!
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Choice from Budget Sets

• Need some way of identifying when an alternative x is better
than alternative y
• i.e. some way to identify strict preference

• One case in which we can do this is if our data comes from
people choosing consumption bundles from budget sets
• Should be familiar from previous economics courses

• The objects that the DM has to choose between are bundles
of different commodities

x =

x1...
xn


• And they can choose any bundle which satisfies their budget
constraint {

x ∈ Rn
+|

n

∑
i=1
pixi ≤ I

}
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Choice from Budget Sets



Monotonicity

• Claim: We can use choice from budget sets to identify strict
preference

• Even if we only see a single bundle chosen from each budget
set

• As long as we assume something about how preferences work

• One example: More is better

xn ≥ yn for all n and xn > yn for some n

implies that x � y

• i.e. preferences are strictly monotonic
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Monotonicity



Monotonicity

• Claim: if px is the prices at which the bundle x was chosen

pxx > pxy implies x � y

• Why?



Revealed Strictly Preferred

• Because x was chosen, we know x % y
• Because pxx > pxy we know that y was inside the budget
set when x was chosen

• Could it be that y % x?



Revealed Strictly Preferred

• Because y is inside the budget set, there is a z which is better
than y and affordable when x was chosen

• Implies that x % z and (by monotonicity) z � y
• By transitivity x � y



Revealed Strictly Preferred

• In fact we can make use of a weaker property than strict
monotonicity

Definition
We say preferences % are locally non-satiated on a metric space
X if, for every x ∈ X and ε > 0, there exists

y ∈ B(x , ε)

such that

y � x

Lemma
Let x j and xk be two commodity bundles such that pjxk < pjx j . If
the DM’s choices can be rationalized by a complete locally
non-satiated preference relation, then it must be the case that
x j � xk
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Revealed Preference

• When dealing with choice from budget sets we say

• x is directly revealed preferred to y if px x ≥ px y
• x is revealed preferred to y if we can find a set of
alternatives w1, w2, ....wn such that

• x is directly revealed preferred to w1
• w1 is directly revealed preferred to w2
• ...
• wn−1 is directly revealed preferred to wn
• wn is directly revealed preferred to y

• x is strictly revealed preferred to y if px x > px y



Afriat’s Theorem

Theorem (Afriat)
Let {x1, .....x l} be a set of chosen commodity bundles at prices{
p1, ..., pl

}
. The following statements are equivalent:

1 The data set can be rationalized by a locally non-satiated set
of preferences � that can be represented by a utility function

2 The data set satisfies GARP (i.e. xRy implies not ySx)

3 There exists positive
{
ui ,λi

}l
i=1

such that

ui ≤ uj + λjpj (x i − x j ) ∀ i , j

4 There exists a continuous, concave, piecewise linear, strictly
monotonic utility function u that rationalizes the data



Things to note about Afriat’s Theorem

• Compare statement 1 and statement 4
• The data set can be rationalized by a locally non-satiated set
of preferences � that can be represented by a utility function

• There exists a continuous, concave, piecewise linear, strictly
monotonic utility function u that rationalizes the data

• This tells us that there is no empirical content to the
assumptions that utility is

• Continuous
• Concave
• Piecewise linear

• If a data set can be rationalized by any locally non-satiated
set of preferences it can be rationalized by a utility function
which has these properties
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Things to note about Afriat’s Theorem

• What about statement 3?

• There exists positive
{
ui ,λi

}l
i=1

such that

ui ≤ uj + λjpj (x i − x j ) ∀ i , j

• This says that the data is rationalizable if a certain linear
programming problem has a solution

• Easy to check computationally
• Less insight than GARP
• But there are some models which do not have an equivalent of
GARP but do have an equivalent of these conditions



Things to note about Afriat’s Theorem

• Where do these conditions come from?
• Imagine that we knew that this problem was differentiable

max u(x) subject to ∑
j
pij xj ≤ I

with u concave

• FOC for every problem i and good j

∂u(x i )
∂x ij

= λipij

• Implies
∇u(x i ) = λipi

• where ∇u is the gradient function and pi is the vector of prices



Things to note about Afriat’s Theorem

• Recall (or learn), that for concave functions

u(x i ) ≤ u(x j ) +∇u(x j )(x i − x i )

• i.e. function lies below the tangent

• So
u(x i ) ≤ u(x j ) + λjpj (x i − x j )
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