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Representation Theorem

e We have now proved the following theorem

Theorem
A Choice Correspondence on a finite X has a utility representation
if and only if it satisfies axioms a and

e Great! We know how to test the model of utility
maximization!

e However, our theorem is only as useful as the data set we are
working with

e As discussed at the time, there are some problems with the
data we have assumed so far



Problems with the Data Set

e What are some issues with this data set?

® Observe choices from all choice sets
® We allow for people to choose more than one option

e j.e. we allow for data of the form

C({ kitkat, jaffacakes, lays}) = {jaffacakes, kitkat}

® X Finite



What if X is not Finite?

e So far we have assumed that the set of available alternatives
is finite

Theorem
A Choice Correspondence on a finite X has a utility representation
if and only if it satisfies axioms a and 3

e However, this may be limiting

e Choice from lotteries
e Choice from budget sets

e Can we drop the word ‘finite’ from the above theorem?



What if X is not Finite?

e Remember we proved the theorem in three steps

@ Show that if the data satisfies & and B then we can find a
complete, transitive, reflexive preference relation > which
represents the data

® Show that if the preferences are complete, transitive and
reflexive then we can find a utility function u which represents
them

© Show that if the data has a utility representation then it must
satisfy « and

e Where did we make use of finiteness?



What if X is not Finite?

e In fact the problems relating choice to preference
maximization are relatively minor

e The main issue here is that, if we want to define choice on all
subsets of X we cannot guarantee that

C(A) ={x € Alx = yforally € A}

is well defined
e Example?
e But we can get round this relatively easily

e For example by demanding that we only observe choices from
finite subsets of X

e Even if X itself is not finite

e As we shall see later we may be able to do better than this



What if X is not Finite?

What about the relationship between preference and utility?
Here in the proof we made heavy use of finiteness

e Induction

Are we in trouble?

Just because we made use of the fact that X was finite in
that particular proof doesn’'t mean that it is necessary for the
statement to be true

Maybe we will be lucky and the statement remains true for
arbitrary X....

Sadly not



Infinity!

e Some definitions you should know
Definition
The natural, or counting numbers, denoted by IN, are the set of
numbers {1,2,3,......}
Definition
The integers, denoted by Z, are the set of numbers
{..-3,-2,-1,0,1,2,3,..}
Definition
The rational numbers, denoted by Q, are the set of numbers

Q:{%pez,beﬂ\r}

Definition
A set is countably infinite if there is a bijection between that set
and the natural numbers



Infinity!

e Here are some properties of Q and RR.

® Q is countable
® IR is uncountable

© For every a, b € R such that a < b, there exists a ¢ € Q such
a<c<b(ie QisdenseinR)



Lexicographic Preferences

Definition
Let > be a binary relation on R x {1,2} such that
{a,b} = {c d}iff
(ia >

or (i)a = cand b>d

C

You should check that you agree that > is a complete preference
relation.

Fact
There is no utility function that rationalizes > .



Utility Representation with Non-Finite X

So what can we do in order to ensure that preferences have a
utility representation?

First things first: how big is the problem?

The counter example above made use of the fact that X was
uncountable

Does this mean the problem goes away if X is countably
finite?

It turns out the answer is yes



Utility Representation with Countable X

Theorem
If a relation > on a countable X is complete, transitive and

reflexive then there exists a utility function u: X — IR which
represents =, I.e.

ulx) > uly) = xry



Utility Representation with Uncountable X

e We know from the example of lexicographic preferences that

we cannot replace ‘countable’ with ‘any’ X in the previous
theorem

e In order to guarantee that we have a utility representation of a
preference relation on an uncountable X we need another
condition



Continuity

e One way to go is to insist that preferences are continuous

e Broadly speaking, this means that if we change the items a
little bit the preferences also change only a little bit

e i.e. they don't ‘jump’

Definition

We say that a preference relation > on a metric space X is
continuous if, for any x, y € X such that x > y, there exists an
€ > 0 such that, for any x’ € B(x,¢) and y’ € B(y,¢), x' =y’

e Examples of preferences that are not continuous?

e Lexicographic preferences
e 'The price is right’



Continuity

e An alternative characterization of continuity:

Lemma
A preference relation > on a metric space X is continuous if and

only if, for every x,y € X and sequence {x,, yn} such that x, — x
and y, — y then x, = y, ¥V n implies x = y

e j.e. the graph of > is closed

e You will prove for homework that these two definitions are
equivalent



Continuity

e One thing that is relatively easy to prove is that continuity of
utility implies continuity of preference

Theorem
If a preference relation = can be represented by a continuous
utility function then it is continuous



Debreu's Theorem

e One of the most famous theorems in mathematical social
sciences is that continuity guarantees the existence of a
continuous utility representation

Theorem (Debreu)

Let X be a separable metric space, and > be a complete
preference relation on X. If = is continuous, then it can be
represented by a continuous utility function.

e Proving this in all its glory is beyond us, so we are going to
prove something weaker

Theorem

Let X be a convex subset of R" and = be a complete preference
relation on X. If = is continuous, then it can be represented by a
utility function.



Back to Choice

e So now we have a method of dealing with utility and
preferences in uncountable domains

e What about choice?
e Here we now have two issues

@ We need to guarantee that maximal elements exist in all
choice sets

® We would like to make sure the preferences that represent
choices are continuous



Back to Choice

To deal with problem 1 we will restrict ourselves to compact
subsets of X

Notice that if we can guarantee continuous preferences then
this solves the first problem

e Continuous preferences are equivalent to continuous utility
functions
e Continuous functions on compact sets obtain their maximum

So how can we guarantee choice can be represented by
continuous preferences?
We would like choices to be continuous!

e Choice sets that are ‘close’ to each other give rise to ‘similar’
choices



The Hausdorff Metric

e How can we make this formal?

e \We need a metric on sets!

Definition (The Hausdorff metric)

Let (X, d) be a metric space, and cb(X) be the set of all closed
and bounded subsets of X. We will define the metric space
(cb(X),d"), where d" is the Hausdorff metric induced by d, and is
defined as follows: For any A, B € cb(X), define A(A, B) as
supyeca d(x, B). Now define

d"(A, B) = max{A(A B),A(B, A)}



The Hausdorff Metric

e \We can use this to define a continuous choice
correspondence

Definition

Let X be a compact metric space and Q)x be the set of all closed
subsets of X and C : Qx — 2% be a choice correspondence. If
Sm— Sfor Sy, S € Qx, xm € C(Sy) ¥V m and x,, — x, implies
that x € C(S), then we say C is continuous.

e It turns out that continuity, plus & and B, is enough to give us
our desired results

Theorem

Let X be a compact metric space and Q)x be the set of all closed
subsets of X and C : Qx — 2% be a choice correspondence. C
satisfies properties « , B and continuity if and only if there is a
complete, continuous preference relation = on X that rationalizes

C.



Choices from all Choice Sets?

Imagine running an experiment to try and test & and f

The data that we need is the choice correspondence
C:2%/0 = 2%/

How many choices would we have to observe?
Lets say |X| =10

e Need to observe choices from every A € 2X /@
e How big is the power set of X?

e If | X| = 10 need to observe 1024 choices

e If | X| = 20 need to observe 1048576 choices

This is not going to work!



Choices from all Choice Sets?

So how about we forget about the requirement that we
observe choices from all choice sets

Are a and P still enough to guarantee a utility representation?

C({x.y})
C({y.z})
C({x.z})

If this is our only data then there is no violation of « or 8

But no utility representation exists!

We need a different approach!

{x}
{r}
{z}



A Diversion into Order Theory

e In order to do this we are going to have to know a few more
things about order theory (the study of binary relations)

e In particular we are going to need some definitions

Definition
A transitive closure of a binary relation R is a binary relation T(R)
that is the smallest transitive binary relation that contains R.

eie T(R)is

e Transitive

o Contains R in the sense that xRy implies xT (R)y

e Any binary relation that is smaller (in the subset sense) is
either intransitive or does not contain R

e Example?

e Question: is this always well defined?



A Diversion into Order Theory

e We can alternatively define the transitive closure of a binary
relation R on X as the following:

Remark

o @ DefineRy =R
® Define Ry, as xRny if there exists z1, ..., zm € X such that
xRz1R...Rzm Ry
©® T =RUjen Rm



A Diversion into Order Theory

Definition
Let = be a preorder on X. An extension of > is a preorder >
such that

- CD

= Cbk

Where
e > is the asymmetric part of =, so x > y if x > y but not
y = x
e [> is the asymmetric part of >, so x > y if x > y but not
y B x

e Example?



A Diversion into Order Theory

e We are also going to need one theorem

Theorem (Sziplrajn)
For any nonempty set X and preorder = on X there exists a
complete preorder that is an extension of >

e Relatively easy to prove if X is finite, but also true for any
arbitrary X



Revealed Preference

e Okay, back to choice
e The approach we are going to take is as follows:

e Imagine that the model of preference maximization is correct
e What observations in our data would lead us to conclude that
x was preferred to y?



Revealed Preference

o We say that x is directly revealed preferred to y (xRPy) if,
for some choice set A

y € A
x € C(A)

e We say that x is revealed preferred to y (xRy) if we can
find a set of alternatives wy, wy, ....w, such that

o x is directly revealed preferred to wy

e wjy is directly revealed preferred to wy

° ..

e w,_1 is directly revealed preferred to wy
e wj, is directly revealed preferred to y

e l.e. R is the transitive closure of RP



Revealed Preference

e We say x is strictly revealed preferred to y (xSy) if, for
some choice set A

y € Abutnotyec C(A)
x € C(A)



Notes

e Is it always true that choosing x over y means that you prefer
x to y?
e Almost certainly not
e Think of a model of ‘consideration sets’

e Only true in the context of the model of preference
maximization



The Generalized Axiom of Revealed Preference

e Note that we can observe revealed preference and strict
revealed preference from the data

e With these definitions we can write an axiom to replace « and

p

e What behavior is ruled out by utility maximization?

Definition

A choice correspondence C satisfies the Generalized Axiom of
Revealed Preference (GARP) if it is never the case that x is
revealed preferred to y, and y is strictly revealed preferred to x

e i.e. xRy implies not ySx



The Generalized Axiom of Revealed Preference

Theorem
A choice correspondence C on an arbitrary subset of 2X /0
satisfies GARP if and only if it has a preference representation

Corollary

A choice correspondence C on an arbitrary subset of 2% /@ with X
finite satisfies GARP if and only if it has a utility representation



Choices from all Choice Sets?

e Note that this data set violates GARP

Clxy}) = {x}
C{y.z}) {v}
C{x.z}) = {z}

e xRPy and yRPz so xRz
e But z5x



Choice Correspondence?

Another weird thing about our data is that we assumed we
could observe a choice correspondence

e Multiple alternatives can be chosen in each choice problem
This is not an easy thing to do!
What about if we only get to observe a choice function?

e Only one option chosen in each choice problem

How do we deal with indifference?



Choice Correspondence?

One of the things we could do is assume that the decision
maker chooses one of the best options

C(A) € argmax u(x)

XEA
Is this going to work?
No!
Any data set can be represented by this model
° V\/hy7

e We can just assume that all alternatives have the same utility!



Choice Correspondence?

Another thing we can do is assume away indifference

C(A) = arg max u(x)

e for some one-to-one function u
Is this going to work?

Yes

e Implies that data is a function
e Property « (or GARP) will be necessary and sufficient (if X is
finite)
But maybe we don’t want to rule out indifference!

e Maybe people are sometimes indifferent!



Choice from Budget Sets

Need some way of identifying when an alternative x is better
than alternative y
e i.e. some way to identify strict preference

One case in which we can do this is if our data comes from
people choosing consumption bundles from budget sets

e Should be familiar from previous economics courses

The objects that the DM has to choose between are bundles
of different commodities

X1

Xn

And they can choose any bundle which satisfies their budget

constraint
n
{x € R | Zp,-x,- < I}
i=1



Choice from Budget Sets

Budget constraint is
P1X; + PoXp = 1.




Monotonicity

e Claim: We can use choice from budget sets to identify strict
preference

e Even if we only see a single bundle chosen from each budget
set

e As long as we assume something about how preferences work

e One example: More is better

X, > ypforall nand x, > y, for some n

implies that x > y

e i.e. preferences are strictly monotonic



@________

Everything
in this
quadrant
better than x

Monotonicity



Monotonicity

e Claim: if p* is the prices at which the bundle x was chosen
p*x > p*Xy implies x > y

[ V\/hy7



Revealed Strictly Preferred

X

e Because x was chosen, we know x 7 y

e Because p*x > p*y we know that y was inside the budget
set when x was chosen

e Could it be that y 77 x7



Revealed Strictly Preferred

e Because y is inside the budget set, there is a z which is better
than y and affordable when x was chosen

e Implies that x 77 z and (by monotonicity) z > y
e By transitivity x > y



Revealed Strictly Preferred

e In fact we can make use of a weaker property than strict
monotonicity
Definition
We say preferences 7 are locally non-satiated on a metric space
X if, for every x € X and € > 0, there exists

y € B(x¢)
such that
y = X

Lemma

Let x) and x* be two commodity bundles such that p/x* < p/x. If
the DM'’s choices can be rationalized by a complete locally
non-satiated preference relation, then it must be the case that

x) = xk



Revealed Preference

e When dealing with choice from budget sets we say

e x is directly revealed preferred to y if p*x > p*y
e x is revealed preferred to y if we can find a set of
alternatives wy, wo, ....w, such that

x is directly revealed preferred to wy

wy is directly revealed preferred to w»

wp—_1 is directly revealed preferred to wy

[ ]
[ ]
[ ]
[ ]
® w, is directly revealed preferred to y

e x is strictly revealed preferred to y if p*x > p*y



Afriat’s Theorem

Theorem (Afriat)

Let {x',....x'} be a set of chosen commodity bundles at prices
{p'.....p'}. The following statements are equivalent:

@ The data set can be rationalized by a locally non-satiated set
of preferences > that can be represented by a utility function

@® The data set satisfies GARP (i.e. xRy implies not ySx)
/

© There exists positive {ui A } such that

i=1
v < NP (X=X Vi)

O There exists a continuous, concave, piecewise linear, strictly
monotonic utility function u that rationalizes the data



Things to note about Afriat’'s Theorem

e Compare statement 1 and statement 4

e The data set can be rationalized by a locally non-satiated set
of preferences > that can be represented by a utility function

e There exists a continuous, concave, piecewise linear, strictly
monotonic utility function v that rationalizes the data

e This tells us that there is no empirical content to the
assumptions that utility is
e Continuous

e Concave
e Piecewise linear

e If a data set can be rationalized by any locally non-satiated
set of preferences it can be rationalized by a utility function
which has these properties



Things to note about Afriat’'s Theorem

e What about statement 37

/
~_ such that

e There exists positive {ui, /\i} .
1=

U<+ MpI (X =) Y

e This says that the data is rationalizable if a certain linear
programming problem has a solution
e Easy to check computationally
o Less insight than GARP

e But there are some models which do not have an equivalent of
GARP but do have an equivalent of these conditions



Things to note about Afriat’'s Theorem

Where do these conditions come from?

Imagine that we knew that this problem was differentiable

max u(x) subject to ij)g <1
J

with u concave

FOC for every problem i and good j

du(x") ;o

)~ Al

ox] £

Implies . o
Vu(x")=A'p’

e where Vu is the gradient function, p' is the vector of prices
and A’ the lagrnge multiplier



Things to note about Afriat’'s Theorem

e Recall (or learn), that for concave functions
u(x") < u(x) + Vu(x) (x" — x')

e i.e. function lies below the tangent

u(x") <u(x)+Mp(x' —x)
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