Utility Maximization 2: Extensions - Proofs

Mark Dean

GR6211 - Microeconomic Analysis 1

Lexicographic Preferences

- Proof:
- Assume that such a utility function exists
- Then, for every $a \in \mathbb{R}$ it must be the case that $u(a, 2)>u(a, 1)$
- Moreover, for every $b>a$

$$
u(b, 1)>u(a, 2)
$$

- Thus, every $a \in \mathbb{R}$ generates an interval on the real line, and these intervals are non-overlapping
- Each such interval includes a rational number
- Contradicts the remark that the rational numbers are countable and the real numbers are not.

Utility Representation with Countable X

- Proof:
- Let $\left\{x_{n}\right\}$ be an enumeration of X
- Let $x_{0}=0$
- Assign a utility number u to each x_{n+1} as in the finite case, by using the utility representation that worked for $x_{1}, \ldots . x_{n}$ and then assigning a number that works for x_{n+1}
- This procedure assigns utility numbers to each $x \in X$
- And we know that for any x_{n} the utility function represents preferences between x_{n} and x_{m} for $m \leq n$
- Now take $x, y \in X$. WLOG $x=x_{n}, y=x_{m}$ for $m \leq n$
- We know that $x \succeq y \Longleftrightarrow x_{n} \succeq x_{m} \Longleftrightarrow u\left(x_{n}\right) \geq u\left(x_{m}\right)$
- Why does this proof not work if X is uncountable?

Continuity

- One thing that is relatively easy to prove is that continuity of utility implies continuity of preference

Theorem
If a preference relation \succeq can be represented by a continuous utility function then it is continuous

Proof.

Assume \succeq is not continuous, then there exists and sequence $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ such that

$$
x_{n} \succeq y_{n} \text { but } y>x
$$

But this implies that $u\left(x_{n}\right) \geq u\left(y_{n}\right) \forall x_{n}$ but $u(y)>u(x)$ contradicting continuity of u.
To see this let $\delta=\frac{u(y)-u(x)}{2}$ and note that there must exist some ε such that for x_{n} such that $\left.d\left(x_{n}, x\right) \leq \varepsilon, \mid u\left(x_{n}\right)-u(x)\right) \mid<\delta$ implying that $u\left(x_{n}\right)<u(y)$

Debreu's Theorem

Lemma

If \succeq is a continuous complete preference relation on a convex subset of \mathbb{R}^{n} and $x \succ y$ then there exists $z \in X$ such that $x \succ z \succ y$

Debreu's Theorem

- Proof: Assume not
- Construct the following sequence inductively
- Set $x_{0}=x$ and $y_{0}=y$
- At step $n+1$ assume that $x_{n} \succeq x$ and $y \succeq y_{n}$
- Take the point m between x_{n} and y_{n}
- It must be the case that either $m \succeq x$ or $y \succeq m$ (otherwise we have $x \succ m \succ y$ which we have ruled out by assumption)
- In the former case set x_{n+1} to m and y_{n+1} to y_{n}. In the latter case, set x_{n+1} to x_{n} and y_{n+1} to m
- This generates two sequences which converge to the same point z
- By continuity of preferences, as $x_{n} \succeq x$ for every n it must be $z \succeq x$
- Similarly, as $y \succeq y_{n}$ every n it must be that $y \succeq z$
- Implies by transitivity that $y \succeq x$ - contradiction

Debreu's Theorem

- We will need one more definition

Definition

A set Y is dense in the set X if, for every $x \in X$ and $\varepsilon>0$ there exists $y \in Y$ in $B(x, \varepsilon)$

Fact

\mathbb{R}^{n} has a countable dense subset (e.g. the members of \mathbb{R}^{n} where each coordinate is rational)

Debreu's Theorem

- We can now prove our theorem
- Step 1: Let Y be a countable dense subset of X. We have already shown that there exists a function v which represents \succeq on Y.
- In fact, we can restrict this function to be between -1 and 1
- Step 2: Define u as follows. For any $x \in X$

$$
u(x)=\sup \{v(z) \mid z \in Y \text { and } x \succ z\}
$$

- If no y exists such that $x \succ y$ let $u(x)=-1$

Debreu's Theorem

- Step 3: We now need to show that u represents \succeq. We can do that in two parts
- First note that if $x \sim y$ then $x \succ z$ if and only if $y \succ z$ and so

$$
\begin{aligned}
u(x) & =\sup \{v(z) \mid z \in Y \text { and } x \succ z\} \\
& =\sup \{v(z) \mid z \in Y \text { and } y \succ z\} \\
& =u(y)
\end{aligned}
$$

- Step 4: If $x \succ y$ then, by previous lemma, there exists z_{1} and z_{2} such that $x \succ z_{1} \succ z_{2} \succ y$
- By continuity this means that we can pick z_{3} and $z_{4} \in Y$ such that $x \succ z_{3} \succ z_{4} \succ y$
- Thus

$$
\begin{aligned}
u(x) & \geq u\left(z_{3}\right) \\
& >u\left(z_{4}\right) \\
& \geq u(y)
\end{aligned}
$$

The Generalized Axiom of Revealed Preference

- Proof: GARP implies representation
- First, note that R is transitive (and without loss of generality we can assume it is reflexive)
- Also note that, by GARP, S is the asymmetric part of R
- This means that, by Sziplrajn's theorem there exists a complete preference relation \succeq such that

$$
\begin{aligned}
x R y \text { implies } x & \succeq y \\
x \text { Sy implies } x & \succ y
\end{aligned}
$$

The Generalized Axiom of Revealed Preference

- All we need to show is that \succeq represents choice, i.e

$$
C(A)=\{x \in A \mid x \succeq y \text { all } y \in A\}
$$

- Again, need to show two things
(1) $x \in C(A) \Rightarrow x \succeq y$ all $y \in A$
- This follows from the fact that $x \in C(A) \Rightarrow x R^{D} y \forall y \in A$ and so $x \succeq y \forall y \in A$
(2) $x \in A$ and $x \succeq y$ all $y \in A \Rightarrow x \in C(A)$
- Assume by way of contradiction $x \notin C(A)$, and take $y \in C(A)$
- This implies that $y S x$ and so $y \succ x$ and therefore not $x \succeq y$
- Contradiction

