Constrained Optimization Solutions

Math Camp 2012

1 Exercises

1. There are two commodities: \(x \) and \(y \). Let the consumer’s consumption set be \(\mathbb{R}^2_+ \) and his preference relation on his consumption set be represented by \(u(x, y) = -(x - 4)^2 - y^2 \). When his initial wealth is 2 and the relative price is 1, solve his utility maximization problem if it is well defined.

The problem is defined as \(\max_{x \in \mathbb{R}^2_+} u(x, y) \) subject to \(x + y \leq 2 \) (assuming that the wealth of two is in relative terms). We can re-express this problem in such a way that all the constraints are explicit and therefore we have that we want to find \((x, y) \) that solves the following problem

\[
\max_{x \in \mathbb{R}^2} u(x, y) \quad \text{subject to} \quad x + y \leq 2, \quad x \geq 0 \quad \text{and} \quad y \geq 0.
\]

The Lagrangian is as follows:

\[
L(x, \lambda) = -(x - 4)^2 - y^2 - \lambda(x + y - 2) + \mu_1 x + \mu_2 y.
\]

\[
\frac{\partial L}{\partial x} = -2(x - 4) - \lambda + \mu_1 = 0, \quad \frac{\partial L}{\partial y} = 2y - \lambda + \mu_2 = 0
\]

\[
\lambda(x + y - 2) = 0, \quad \mu_1 x = 0, \quad \mu_2 y = 0
\]
\[
\lambda, \mu_1, \mu_2 \geq 0, \quad x + y \leq 2, \quad x, y \geq 0.
\]

Discussing by (CS) we have 8 cases.

- **Case 1** \(\lambda = \mu_1 = \mu_2 = 0 \) Then by (1) we have that \(y = 0 \) and \(x = 4 \) which contradicts the constraint that \(x + y \leq 2 \).

- **Case 2** \(\lambda \neq 0, \mu_1 = \mu_2 = 0 \) Given that \(\lambda \neq 0 \) we must have that \(x + y = 2 \) (i). Given that \(\mu_1 = \mu_2 = 0 \) then by (1) we have that \(\lambda = 2y = -2x + 8 \), therefore \(y = 4 - x \), plugging in (i) we have that \(x + 4 - x = 2 \) which is a contradiction

- **Case 3** \(\mu_1 \neq 0, \lambda = \mu_2 = 0 \) Then by (CS) we have that \(x = 0 \). By (1) then we have that \(y = 0 \). But if \(x = y = 0 \) then by (1) we have that \(\mu_1 = -8 \) contradiction.

- **Case 4** \(\mu_2 \neq 0, \mu_1 = \lambda = 0 \) Then by (CS) we have that \(y = 0 \). By (1) \(\mu_2 = 0 \) so we are back to case 1

- **Case 5** \(\lambda = 0, \mu_1 \neq 0, \mu_2 \neq 0 \) Then by (CS) we must have that \(x = y = 0 \), but then from 1 we get that \(\mu_2 = 0 \), and \(\mu_1 = -8 \) which is a contradiction.

- **Case 6** \(\mu_1 = 0, \lambda \neq 0, \mu_2 \neq 0 \) Then by (CS) we have that \(y = 0 \), and \(x + y = 2 \), therefore \(x = 2 \). By (1) we get that \(\mu_2 = \lambda \), and \(\lambda = 4 \)

- **Case 7** \(\mu_2 = 0, \mu_1 \neq 0, \lambda \neq 0 \) Then by (CS) we have that \(x = 0 \) and \(x + y = 2 \), therefore \(y = 2 \). From the second equation in (1) we get that \(\lambda = 4 \), if so, from the first equation we get that \(\mu_1 = -4 \) which is a contradiction.
2 Constrained Optimization Solutions

• **Case 8** \(\lambda \neq 0, \mu_1 \neq 0, \mu_2 \neq 0 \) Therefore by (CS) we must have that \(x = 0, y = 0 \) and \(x + y = 2 \) which is a contradiction.

Therefore, the unique solution is \((x^*, y^*, \lambda, \mu_1, \mu_2) = (2, 0, 4, 0, 4)\) and \(u(x^*, y^*) = -4 \).

2. Let \(f : \mathbb{R}_+ \rightarrow \mathbb{R} \) and \(f(x) = -(x+1)^2 + 2 \). Solve the maximization problem if it is well defined.

The Lagrangian is as follows:

\[
L(x, \lambda) = -(x+1)^2 + 2 + \lambda(x - 0).
\]

\[
\frac{\partial L}{\partial x} = -2(x+1) + \lambda = 0 \tag{3}
\]

\[
\lambda x = 0 \tag{CS}
\]

\[
\lambda \geq 0, \quad x \geq 0. \tag{4}
\]

If \(\lambda = 0, \) \(x = -1 \) by (3), which contradicts (4). If \(\lambda > 0, \) \(x = 0 \) by (CS) and there is no contradiction. Since \(f \) is decreasing on the constraint set, \(0 \) is the unique maximizer.

3. Let \(f : \mathbb{R}_+^2 \rightarrow \mathbb{R} \) and \(f(x, y) = 2y - x^2 \). When \((x, y)\) must be on the unit disc, i.e., \(x^2 + y^2 \leq 1 \), solve the minimization problem if it is well defined.

The Lagrangian is as follows:

\[
L(x, y, \lambda, \mu_1, \mu_2) = 2y - x^2 + \lambda(x^2 + y^2 - 1) - \mu_1 x - \mu_2 y.
\]

\[
\frac{\partial L}{\partial x} = -2x + 2\lambda x - \mu_1 = 0,
\]

\[
\frac{\partial L}{\partial y} = 2 + 2\lambda y - \mu_2 = 0 \tag{5}
\]

\[
\lambda(x^2 + y^2 - 1) = 0, \quad \mu_1 x = 0, \quad \mu_2 y = 0 \tag{CS}
\]

\[
\lambda, \mu_1, \mu_2 \geq 0, \quad x^2 + y^2 \leq 1, \quad x, y \geq 0. \tag{6}
\]

If \(\mu_1 \neq 0, \) \(x = 0 \) by (CS). By (5), \(\mu_1 = 0 \), which is a contradiction. Thus \(\mu_1 = 0 \) (if a solution exists).

If \(\lambda = 0, \) \(x = 0 \) and \(\mu_2 = 2 \) by (5). By (CS), \(y = 0 \). This is a candidate of the solution.

If \(\lambda \neq 0, \) \(x^2 + y^2 - 1 = 0 \) by (CS). If \(\mu_2 \neq 0, \) \(y = 0 \) by (CS) and \(\mu_2 = 2 \) by (5). By (6), \(x = 1 \) and \(\lambda = 1 \) by (5). This is another candidate. If \(\mu_2 = 0, \) \(\lambda y = -1 \), which is a contradiction to (6).

Since \(f(0, 0) = 0 > -1 = f(1, 0) \), the unique candidate is \((x^*, y^*, \lambda, \mu_1, \mu_2) = (1, 0, 1, 0, 2)\) and \(f(x^*, y^*) = -1 \).

If \(\min f(x, y) < -1 \), there exists \((\tilde{x}, \tilde{y})\) on the constraint set such that \(2\tilde{y} - \tilde{x}^2 < -1 \). By (6), we have \(1 \leq 2\tilde{y} + 1 < \tilde{x}^2 \), which implies that \(|\tilde{x}| > 1 \). This contradicts (6).

Therefore, the unique solution is \((x^*, y^*, \lambda, \mu_1, \mu_2) = (1, 0, 1, 0, 2)\) and \(f(x^*, y^*) = -1 \).

\[\text{This is the same problem as in Example 18.11 of Simon and Blume (1994).}\]
2 Homework

1. **Exercise 18.3** Find the point on the parabola \(y = x^2 \) that is closest to the point \((2,1)\). (Estimate the solution to the cubic equation which results)

 The problem then is to \(\min_{x \in \mathbb{R}} d((x, y), (2, 1)) \sqrt{(x - 2)^2 + (y - 1)^2} \) subject to \(x^2 - y = 0 \).

 The easiest way to solve the problem is just to solve for \(y \) in the constraint and plug it into the objective function, which now will be a function only on \(x \) and without any constraint. Therefore we have that \(y = x^2 \) and plugging into the objective function we get that we can rewrite the problem as \(\min_{x \in \mathbb{R}} (x - 2)^2 + (x^2 - 1)^2 \). Since the function \(f(x) = \sqrt{x} \) is a monotonically increasing function we can further simplify the problem and rewrite it as \(\min_{x \in \mathbb{R}} (x - 2)^2 + (x^2 - 1)^2 \) where the first order condition of the problem is given by

 \[
 x^3 - \frac{1}{2} x - 1 = 0
 \]

 We know that for \(x = 1.1 \), \(f(x) = x^3 - \frac{1}{2} x - 1 < 0 \) and for \(x = 1.2 \), \(f(x) = x^3 - \frac{1}{2} x - 1 > 0 \), so \(x \) should be in \((1.1, 1.2)\). The actual solution is \(x^* = 1.165 \).

2. **Exercise 18.6** Find the max and the min of \(f(x, y, z) = x + y + z^2 \) subject to \(x^2 + y^2 + z^2 = 1 \) and \(y = 0 \).

 The fastest way is to use the constraint \(y = 0 \) and simplify the problem to work with only two variables. Therefore we have that we can rewrite the problem as, find the max and the min of \(f(x, y, z) = x + z^2 \) subject to \(x^2 + z^2 = 1 \). The Lagrangian for this problem is given by

 \[
 L(x, z, \lambda) = x + z^2 - \lambda(x^2 + z^2 = 1)
 \]

 The NDCQ is given by

 \[
 \nabla h(x, z) = \left(\begin{array}{c} 2x \\ 2z \end{array} \right)
 \]

 where the NDCQ is satisfied if it is not the case that \(x = z = 0 \), which we know cannot be the case in the optimum since \(x^2 + z^2 = 1 \). The FOC are given by

 \[
 2z - 2\lambda z = 0 \\
 1 - 2\lambda x = 0
 \]

 therefore we have that \(\lambda = 1 \), \(x = \frac{1}{2} \) and that \(z^2 = \frac{3}{4} \) and therefore \(z = \pm \frac{\sqrt{3}}{2} \). Therefore the solution candidates are given by \((\frac{1}{2}, 0, \frac{\sqrt{3}}{2})\) and \((\frac{1}{2}, 0, -\frac{\sqrt{3}}{2})\).

3. **Exercise 18.7** Maximize \(f(x, y, z) = yz + xz \) subject to \(y^2 + z^2 = 1 \) and \(xz = 3 \)

 DONE in class

4. **Exercise 18.10** Find the maximizer of \(f(x, y) = x^2 + y^2 \), subject to the constraints \(2x + y \leq 2 \), \(x \geq 0 \) and \(y \geq 0 \).

 The Lagrangian is as follows:

 \[
 L(x, \lambda) = x^2 + y^2 - \lambda(2x + y - 2) + \mu_1 x + \mu_2 y.
 \]

 \[
 \frac{\partial L}{\partial x} = 2x - 2\lambda + \mu_1 = 0, \quad \frac{\partial L}{\partial y} = 2y - \lambda + \mu_2 = 0 \tag{7}
 \]

 \[
 \lambda(2x + y - 2) = 0, \quad \mu_1 x = 0, \quad \mu_2 y = 0 \tag{CS}
 \]

 \[
 \lambda, \mu_1, \mu_2 \geq 0, \quad x + y \leq 2, \quad x, y \geq 0. \tag{8}
 \]
Discussing by (CS) we have 8 cases.

- **Case 1** $\lambda = \mu_1 = \mu_2 = 0$ Then by (1) we have that $x = 0$ and $y = 0$.

- **Case 2** $\lambda \neq 0, \mu_1 = \mu_2 = 0$ Given that $\lambda \neq 0$ we must have that $2x + y = 2$, therefore $y = 2 - 2x$ (i). Given that $\mu_1 = \mu_2 = 0$ then by (1) we have that $2x - 2\lambda = 0$ and $2(2 - 2x) - \lambda = 0$, therefore $\lambda = 4 - 4x = x$, then we have that $x = \frac{4}{5}$. Therefore we have that $y = \frac{2}{5}$ and $\lambda_1 = \frac{4}{5}$.

- **Case 3** $\mu_1 \neq 0, \lambda = \mu_2 = 0$ Then by (CS) we have that $x = 0$. By (1) then we have that $\mu_1 = 0$ so we are back to case 1.

- **Case 4** $\mu_2 \neq 0, \mu_1 = \lambda = 0$ Then by (CS) we have that $y = 0$. By (1) $\mu_2 = 0$ so we are back to case 1.

- **Case 5** $\lambda = 0, \mu_1 \neq 0, \mu_2 \neq 0$ Then by (CS) we must have that $x = y = 0$, but then from 1 we get that $\mu_1 = 0$, and $\mu_2 = 0$ so we are back to case 1.

- **Case 6** $\mu_1 = 0, \lambda \neq 0, \mu_2 \neq 0$ Then by (CS) we have that $y = 0$, and $2x + y = 2$, therefore $x = 1$. By (1) we get that $2 - 2\lambda = 0$, therefore $\lambda = 1$, and we get that $\lambda = \mu_2$.

- **Case 7** $\mu_2 = 0, \mu_1 \neq 0, \lambda \neq 0$ Then by (CS) we have that $x = 0$ and $2x + y = 2$, therefore $y = 2$. From the second equation in (1) we get that $\lambda = 4$, and therefore from the first one we have that $\mu_1 = 8$.

- **Case 8** $\lambda \neq 0, \mu_1 \neq 0, \mu_2 \neq 0$ Therefore by (CS) we must have that $x = 0$, $y = 0$ and $2x + y = 2$ which is a contradiction.

Therefore, we have four candidates: $(\frac{4}{5}, \frac{2}{5}), (1,0), (0,0)$ and $(0,2)$. The unique solution is $(x^*, y^*, \lambda, \mu_1, \mu_2) = (2,0,4,0,4)$ and $u(x^*, y^*) = -4$.

5. **Exercise 18.11** Find the maximizer of $f(x, y) = 2y^2 - x$, subject to the constraints $x^2 + y^2 \leq 1$, $x \geq 0$ and $y \geq 0$.

DONE in previous part.

6. **Exercise 18.12** Consider the problem of maximizing $f(x, y, z) = xyz + z$, subject to the constraints $x^2 + y^2 + z \leq 6$, $x \geq 0$, $y \geq 0$ and $z \geq 0$.

(a) Write out a complete set of first order conditions for this problem.

The Lagrangian is as follows:

$$L(x, \lambda) = xyz + z - \lambda(x^2 + y^2 + z - 6) + \mu_1 x + \mu_2 y + \mu_3 z.$$

$$\frac{\partial L}{\partial x} = yz - 2x\lambda + \mu_1 = 0, \quad \frac{\partial L}{\partial y} = xz - 2y\lambda + \mu_2 = 0, \quad \frac{\partial L}{\partial z} = xy + 1 - \lambda + \mu_3 = 0$$

$$\lambda(x^2 + y^2 + z - 6) = 0, \quad \mu_1 x = 0, \quad \mu_2 y = 0, \quad \mu_3 z = 0$$

$$\lambda, \mu_1, \mu_2, \mu_3 \geq 0, \quad x^2 + y^2 + z \leq 2, \quad x, y, z \geq 0.$$

(CS)

(10)
(b) Determine whether or not the constraint \(x^2 + y^2 + z \leq 6\) is binding at any solution

Suppose it is not binding, then we have that \(\lambda = 0\), and therefore we can rewrite the conditions as

\[
\begin{align*}
 yz + \mu_1 &= 0, \quad xz + \mu_2 = 0, \quad xy + 1 + \mu_3 = 0 \\
 \mu_1 x &= 0, \quad \mu_2 y = 0, \quad \mu_3 z = 0 \\
 \lambda, \mu_1, \mu_2, \mu_3 &\geq 0, \quad x, y, z \geq 0.
\end{align*}
\]

(Given the CS condition we have the following cases)

- **Case 1** \(\mu_1 = \mu_2 = \mu_3 = 0\) Then by the first condition we have that \(xy = -1\) which cannot be the case since \(x \geq 0\) and \(y \geq 0\)
- **Case 2** \(\mu_1 \neq 0, \mu_2 = \mu_3 = 0\) Then by the first condition we have that \(xy = -1\) which cannot be the case since \(x \geq 0\) and \(y \geq 0\)
- **Case 3** \(\mu_2 = 0, \mu_1 = \mu_3 = 0\) Then by the first condition we have that \(xy = -1\) which cannot be the case since \(x \geq 0\) and \(y \geq 0\)
- **Case 4** \(\mu_3 \neq 0, \mu_2 = \mu_1 = 0\) Then by the first condition we have that \(xy = -1 - \mu_3\) which cannot be the case since \(x \geq 0\), \(y \geq 0\) and \(\mu_3 > 0\)
- **Case 5** \(\mu_1 = 0, \mu_2 \neq 0, \mu_3 = 0\) Then by the first condition we have that \(xy = -1 - \mu_3\) which cannot be the case since \(x \geq 0\), \(y \geq 0\) and \(\mu_3 = 0\)
- **Case 6** \(\mu_2 = 0, \mu_1 \neq 0, \mu_3 \neq 0\) Then by the first condition we have that \(xy = -1 - \mu_3\) which cannot be the case since \(x \geq 0\), \(y \geq 0\) and \(\mu_3 > 0\)
- **Case 7** \(\mu_3 = 0, \mu_2 \neq 0, \mu_3 \neq 0\) Then by the first condition we have that \(xy = -1\) which cannot be the case since \(x \geq 0\), \(y \geq 0\) and \(\mu_3 > 0\)
- **Case 8** \(\mu_1 \neq 0, \mu_2 \neq 0, \mu_3 \neq 0\) Then by the first condition we have that \(xy = -1 - \mu_3\) which cannot be the case since \(x \geq 0\), \(y \geq 0\) and \(\mu_3 > 0\)

(c) Find a solution of the first order conditions that includes \(x = 0\)

If \(x = 0\) then we can rewrite the FOC as

\[
\begin{align*}
 yz + \mu_1 &= 0, \quad -2y\lambda + \mu_2 = 0, \quad 1 - \lambda + \mu_3 = 0 \\
 \lambda(y^2 + z - 6) &= 0, \quad \mu_2 y = 0, \quad \mu_3 z = 0 \\
 \lambda, \mu_1, \mu_2, \mu_3 &\geq 0, \quad x^2 + y^2 + z \leq 2, \quad y, z \geq 0.
\end{align*}
\]

From the first equation we have that

\[yz = 0 \quad \& \quad \mu_1 = 0, \quad 2y\lambda = \mu_2, \quad 1 - \lambda = \mu_3 = 0\]

Therefore we have a case that satisfies the FOC when \(\mu_2 = \mu_3 = 0\), therefore \(\lambda = 1, y = 0\) and \(z = 6\)

(d) Find three equations in the three unknowns \(x, y, z\) that must be satisfied if \(x \neq 0\) at the solution

If we impose the condition that \(x \neq 0 \Rightarrow x > 0\) we have that the FOC are given by

\[
\begin{align*}
 yz - 2x\lambda &= 0, \quad xz - 2y\lambda + \mu_2 = 0, \quad xy + 1 - \lambda + \mu_3 = 0 \\
 x^2 + y^2 + z - 6 &= 0, \quad \mu_1 = 0, \quad \mu_2 y = 0, \quad \mu_3 z = 0 \\
 \lambda, \mu_2, \mu_3 &\geq 0, \quad y, z \geq 0.
\end{align*}
\]

Therefore we have different cases depending on the values of \(\mu_2\) and \(\mu_3\) (we already prove that there is no solution when \(\lambda = 0\))
• **Case 1** $\mu_2 = \mu_3 = 0$ Then we can rewrite the conditions as

\[
\begin{align*}
yz - 2x\lambda &= 0, \quad xz - 2y\lambda = 0, \quad xy + 1 - \lambda = 0 \quad (17) \\
x^2 + y^2 + z - 6 &= 0, \quad \mu_1 = 0, \quad (CS) \\
\lambda > 0, \quad y, z &\geq 0. \quad (18)
\end{align*}
\]

Therefore we can solve for λ and we get the condition that, given that $x, y \geq 0$ it should be the case that $x = y$, and therefore the conditions that the solution must satisfy in the optimum are

\[
x^2 + y^2 + z = 6 \quad x = y \quad xy + 1 - \frac{z}{2} = 0
\]

• **Case 2** $\mu_2 \neq 0, \mu_3 = 0$ Then we must have that $y = 0$ which contradicts the fact that $-2x\lambda = 0$, when we know that we don’t have a solution if $\lambda = 0$

• **Case 3** $\mu_3 \neq 0, \mu_2 = 0$ Then we must have that $z = 0$ which contradicts the fact that $-2x\lambda = 0$, when we know that we don’t have a solution if $\lambda = 0$

• **Case 4** $\mu_2 \neq 0, \mu_3 \neq 0$ Then we must have that $y = z = 0$ which contradicts the fact that $-2x\lambda = 0$, when we know that we don’t have a solution if $\lambda = 0$

(e) Show that $x = 1, y = 1$ and $z = 4$ satisfies these equations