Introduction to Bounded Rationality

Mark Dean

ECON 2090 Spring 2015

Introduction

- So far: covered the 'rational model' in (excruciating) detail
 Today we will cover our first 'behavioral' topic: Bounded Rationality

- Overview
 Some stylized facts we may want to explain
 Discussion of 'Imperfect Perception', which we will be our focus

Plan for Today

Standard model:

$$C(A) = \max_{x \in A} u(x)$$

- If this is wrong, two ways to go:Modify objectiveModify constraints

- Most of behavioral economics concerned with approach 1
 Bounded rationality concerned with approach 2
- Optimal behavior within some additional constraints

What is Bounded Rationality?

- Costs to acquiring or processing information
 E.g. Simon [1955], Stigler [1961], Sims [2003]

- Limits on reasoning
 E.g. Camerer [2004], Crawford [2005]
 Thinking Aversion
 E.g. Ergin and Sarver [2010], Ortoleva [2013]
- Bounded memory
- E.g. Wilson [2002]
- Automata
- E.g. Piccione and Rubinstein [1993]
 Semi-Rational Models
 E.g. Gabaix et al. [2008], Esponda [2008], Rabin and Vayanos [2010], Gabaix [2013],
- Heuristics
- Tversky and Kahneman [1974], Gigerenzer [2000]

Advantages and Disadvantages of Bounded Rationality

- Advantage:

 Can 'microfound' behavioral models explain how behavioral phenomena can change with the environment
- Disadvantages:
- May be wrong!What is correct constraint?Regress issue

What Might We Want to Explain With Bounded Rationality

- Random Choice
 Status Quo Bias
 Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

- Random ChoiceStatus Quo BiasFailure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

Random Choice (Mosteller and Nogee 1951)

- Gamble is $\frac{1}{3}$ probability win amount and $\frac{2}{3}$ loss of 5c Each bet offered 14 times

- Random Choice
- Status Quo BiasFailure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

Status Quo Bias/Inertia (Madrian and Shea 2001)

- \bullet Observe behavior of workers in firms that offer 401k savings plans
- Two types of plans
- Opt InOpt Out
- Average take up after 3-15 months of tenure
 Opt In: 37%
 Opt Out: 86%

- Effect reduces with tenure
 Also an effect on those not automatically enrolled

- Random Choice
 Status Quo Bias
 Failure to Choose the Best Option
 Salience/Framing Effects
 Too Much Choice
- Statistical Biases
- Compromise Effect

Failure to Choose the Best Option (Caplin, Dean, Martin 2011)

Failure to Choose the Best Option (Caplin, Dean, Martin 2011)

8+8+9-13-9-6+7	15-5-5+6+16+17-20-9	20-27+7-19+2+3-5	3+9-17-99+102-6+15	4+6+10-11-23+9
10-9+17-23+10+2+15	8+9+10-11+8+2+6-32	11+2-5+7-8-9+10	6+18-19-55+70	2+3+6-11-14+9+10

Choice Objects

- 6 treatments
 2 x complexity (3 and 7 operations)
 3 x choice set size (10, 20 and 40 options)
 No time limit

Size 10, Complexity 3

Size 20, Complexity 7

Results Failure rates (%) (22 subjects, 657 choices)

10	20	10	Set size		Failu
200/	22%	7%	ω	Comp	Failure rate
VE 0/	56%	24%	7	Complexity	

Results
Average Loss (\$)

		Set size	10	20	40
,	Com	ω	0.41	1.10	2.30
(4)	olexity	7	1.69	4.00	7.12
, ,	Complexity	size 3 7		1.10	2.30

- Random Choice
- Status Quo Bias
- Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

Salience (Chetty, Looney and Kroft, 2009)

- Experiment in supermarket
 Posted prices usually exclude sales tax
 Post (in addition) prices including sales tax
- Reduced demand for these good by about 8%
 Archival data shows that, for alcohol, elasticity with respect to sales tax changes order of magnitude less that elasticity with respect to price changes

Salience (Chetty, Looney and Kroft, 2009)

	Difference over time	Experiment (2006: 6- 2006:10)	Baseline (2005:1- 2006:6)	Period		Difference over time	Experiment (2006: 6- 2006: 10)	Sasethe (2005:1- 2006:4)	Person		E#ect of
	(0.54) (0.54)	(0.72) (0.72)	30.87 (0.24) [11.020]	Control Categories	NOS	(87.6) (87.6)	27.32 (9.67) (9.68)	26.48 (0.22)	CONTROL CATABONES	TREA	TABLE 5 Test of Posting Tax-inclusive Prices: DDD Analysis of Mean Quantity Sold
DDD Extinate	(0.82) (0.82)	28.19 (1.04) (7.0)	27.54 (0.30) (1.508)	Treated Categories	TROL STORES	-1.30 (0.42) (0.42)	23.07 (1.02) (29)	25.17 (0.37)	INSIES CHESSES.	TREATMENT STORE	N.E.S I: DDD Analysis of Mean Qu
-2.26 (0.59) (19.764)	00 cs = 0.06 (0.95) [13,176]	(1.09) (548)	(0.02) (0.02)	Schellende		00.00 - 2.14 (0.66) p 2.14	(0.64) (0.64)	(1,31 (8,244)	DIMERSON.		antity Sold

What Might We Want to Explain With Bounded Rationality

- Random Choice
 Status Quo Bias
 Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical BiasesCompromise Effect

Too Much Choice (Iyengar and Lepper 2000)

- Set up a display of jams in a local supermarket
 Two treatments:
 Limited choice 6 Jams
 Extensive choice 24 Jams

- Record what proportion of people stopped at each display
 And proportion of people bought jam conditional on stopping

Too Much Choice (Iyengar and Lepper 2000)

- Slightly more people stopped to look at the display in the extensive choice treatment:
- 60% Extensive choice treatment40% Limited choice treatment
- Far more people chose to buy jam, conditional on stopping, in the Limited choice treatment
 3% Extensive choice treatment
 31% Limited choice treatment

Too Much Choice and Simplicity Seeking (Iyengar and Kamenica 2010)

Limited condition 1 2 3	999110	Extensive condition 2 2 3 3 5 5 6 6 7	Gamble #
\$5.00 \$3.50 \$0.00	\$0.50	\$5,00 \$4,50 \$4,00 \$1,50 \$1,50 \$2,50	If heads
\$5.00 \$8.75 \$13.50	\$11.75 \$12.50 \$13.50	\$5.00 \$7.75 \$8.25 \$8.25 \$10.00 \$10.00	If tails

Too Much Choice and Simplicity Seeking (Iyengar and Kamenica 2010)

Too Much Choice and Simplicity Seeking (Iyengar and Kamenica 2010)

Extensive co	ndition					
Gamble #	If 🖸	lf .	If 🖸	lf ∷	If ⊠	If 🔢
1	\$0.00	\$0.00	\$0.00	\$10.00	\$10.00	\$10.00
2	\$1.50	\$9.25	\$8.75	\$7.00	\$0.75	\$1.25
ω	\$4.25	\$5.50	\$9.75	\$8.50	\$0.00	\$0.75
4	\$1.00	\$2.00	\$6.75	\$7.50	\$5.75	\$4.75
5	\$5.50	\$1.00	\$0.75	\$6.50	\$7.50	\$6.75
6	\$0.00	\$0.00	\$8.75	\$2.75	\$9.75	\$8.00
7	\$9.75	\$3.00	\$7.00	\$6.50	\$0.50	\$1.50
80	\$9.50	\$1.50	\$1.50	\$2.50	\$ 3.25	\$10.00
9	\$5.50	\$8.50	\$3.25	\$0.00	\$8.50	\$2.50
10	\$9.25	\$7.75	\$3.75	\$2.00	\$3.25	\$2.00
11	\$1.25	\$4.50	\$8.50	\$8.75	\$4.50	\$0.75

Too Much Choice and Simplicity Seeking (Iyengar and Kamenica 2010)

- Random Choice
- Status Quo BiasFailure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

Gambler's Fallacy (Croson and Sundali 2005)

• Proportion of Gambler's Fallacy bets in casino gambling

Hot Hands Fallacy (Offerman and Sonnemans 2000)

- Two types of coin
- 'Fair': Independent
 'Unfair': Repeat last outcome with probability 70%
- Prior distribution: 50/50
 Subjects observe 20 coin flips, then report probability of unfair coin

Gambler's Fallacy (Croson and Sundali 2005)

For each subject, proportion that overestimate probability of unfair coin

- Random Choice
 Status Quo Bias
 Failure to Choose the Best Option
 Salience/Framing Effects
 Too Much Choice
- Statistical Biases
- Compromise Effect

Compromise Effect (Simonsen 1989)

Compromise Effect (Simonsen 1989)

Imperfect Perception and Information Acquisition

- We are going to focus of models of bounded rationality in which the DM does not necessarily internalize all available information
- They may have a 'perceptual state' which is different from the externally available information
- This is different from most standard models
- DM has perfect perception (e.g. know what is in their choice set)
 Or we know what they do not know (e.g. state of the world)
- In general there may be a gap between what we know as the researcher and what the DM knows
 Shopper may not look at all available options
 Buyer may not perfectly perceive the quality of a car

Imperfect Perception and Information Acquisition

- This can lead to choce 'mistakes' from the point of view of an external observer
- Choose an inferior option
 Make wrong choice given state
- These mistakes may be 'optimal' given information costs and constraints

Imperfect Perception and Information Acquisition

- We will consider two types of unawareness
- All or nothing'
- Alternatives are either completely understood, or nothing is known
 E.g. Consideration sets, sequential sets
 Good description when there are a large number of simple alternatives
 Examples:

- Caplin, Dean and Martin [2011].
 Masatlioglu, Nakajima and Ozbay [2012]
 Manzini and Mariotti [2014]

Imperfect Perception and Information Acquisition

- We will consider two types of unawareness
- Models of partial learning

- States of the world Ω with prior μ
 Choice over actions a : Ω → IR
 Choose an information structure
 Set of signals: Γ(π)
 Probability of receiving each signal γ from each state α : π(γ|ω)
 Choices can be conditioned only on the information structure
 Good description when there are a smaller number of more complicated alternatives
 Examples
 Sims [2003] (Rational Inattention)
 Matejka and McKay [2015]
 Caplin and Dean [2015]