Rational Inattention, and Costly Information Acquisition

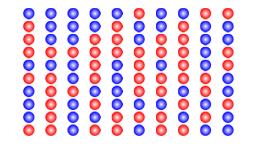
Mark Dean

ECON 2090 Spring 2015

The Story So Far.....

- (Hopefully) convinced you that attention costs are important
- Introduced the 'satisficing' model of search and choice
- But, this model seems quite restrictive:
 - Sequential Search
 - 'All or nothing' understanding of alternatives
- Seems like a good model for choice over a large number of simple alternatives
- Not for a small number of complex alternatives

A Non-Satisficing Situation

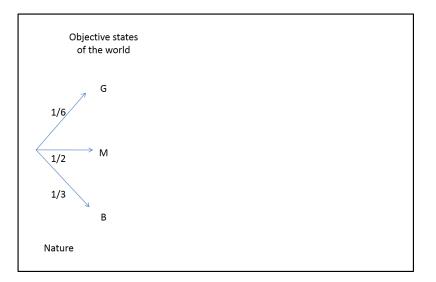


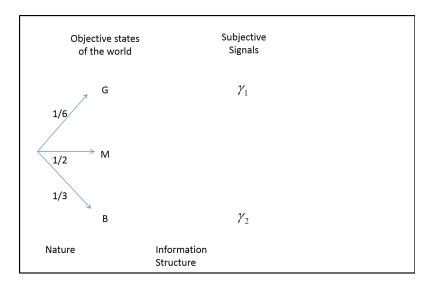
Act	Payoff 47 red dots	Payoff 53 red dots
а	20	0
b	0	10

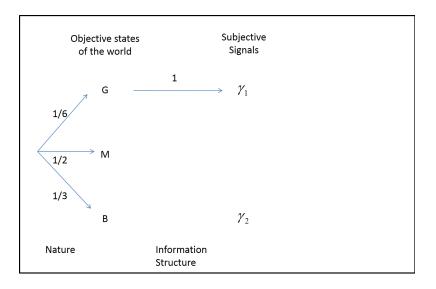
$\mathsf{Set}\ \mathsf{Up}$

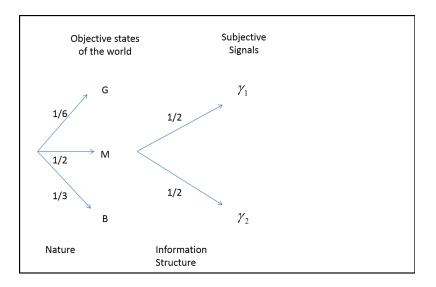
- Objective states of the world
 - e.g. Demand could be 'good', 'medium' or 'bad'
- Decision maker chooses an action
 - e.g. Set price to be high, medium, or low
- Gross payoff depends on action and state
 - e.g. Quantity sold depends on price and demand
- Decision maker get to learn something about the state before choosing action
 - e.g. Could do market research, focus groups, etc.
- Can choose what to learn conditional on the problem

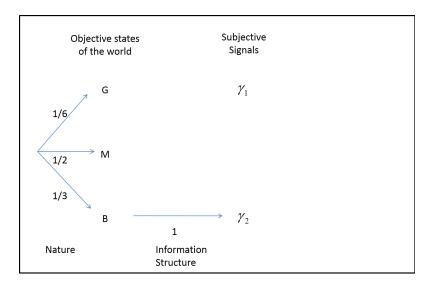
- The specifics of the process of information acquisition may be very complex
- We model the choice of information in an *abstract* way
- The decision maker chooses an information structure
 - Set of signals to receive
 - Probability of receiving each signal in each state of the world
- Choose action conditional on signal received
- Value of strategy given by
 - Expected value of actions taken given posterior beliefs
 - Minus cost of information
- Flexible enough to cover all commonly used models
 - via restriction on the cost function

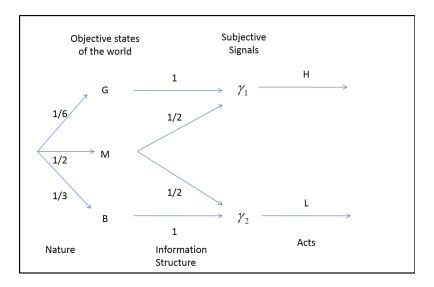


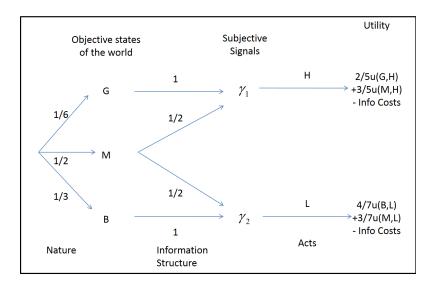












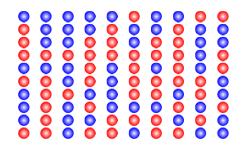
- Ω : Objective states of the world (finite)
 - with prior probabilities μ
- a : An action utility depends on the state
 - $U(\mathbf{a}(\omega))$ utility of action \mathbf{a} in state ω
 - \mathcal{A} : Set of actions:
- $A \subset \mathcal{A}$: Decision problem (finite)

- For each decision problem
 - 1 Choose information structure (π)
 - Defined by:
 - Set of signals: $\Gamma(\pi)$
 - Probability of receiving each signal γ from each state $\omega:\pi(\gamma|\omega)$
 - 2 Choose action conditional on signal received (C)
 - + $C(\gamma)$ probability distribution over actions given signal γ
- In order to maximize
 - Expected value of actions taken given posterior beliefs
 - Minus cost of information K

$$\sum_{\Omega} \mu(\omega) \sum_{\gamma \in \Gamma(\pi)} \pi(\gamma | \omega) \left(\sum_{\mathbf{a} \in \mathcal{A}} C(\mathbf{a} | \gamma) U(\mathbf{a}(\omega)) \right) - \mathcal{K}(\pi)$$

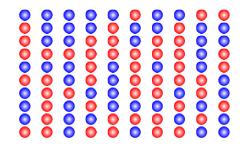
- Let D be a collection of decision problems
- For each A ∈ D we observe state dependent stochastic choice data P_A
 - $P_A(a|\omega)$ probability of choosing action *a* conditional on state ω
- Also assume we observe:
 - Prior probabilities μ
 - Utilities U
- Do not observe
 - Information structures π_A
 - Subjective signals γ
 - Information costs K

An Experimental Example



- Subjects presented with 100 balls
- State is determined by the number of red balls
- Prior distribution of red balls known to subject

An Experimental Example



Action	Payoff 49 red balls	Payoff 51 red balls
а	10	0
b	0	10

No time limit: trade off between effort and financial rewards

An Experimental Example

- Data: State dependant stochastic choice
 - Probability of choosing each action in each objective state of the world

Action	State = 49 red balls	State = 51 red balls
Prob choose a	P(a 49)	P(a 51)
Prob choose b	P(b 49)	P(b 51)

- Observe subject making same choice 50 times
- Can use this to estimate P_A

- What type of stochastic choice data {*D*, *P*} is consistent with optimal information acquisition?
- i.e. there exists a cost function K
- For each decision problem A ∈ D an information structure π_A and choice function C_A s.t.
 - C_A is optimal for each γ
 - π_A is optimal given K
 - C_A and π_A are consistent with P_A

$$P_{\mathcal{A}}(\mathbf{a}|\omega) = \sum_{\gamma \in \Gamma(\pi_{\mathcal{A}})} \pi_{\mathcal{A}}(\gamma|\omega) C_{\mathcal{A}}(\mathbf{a}|\gamma).$$

• What 'mistakes' are consistent with optimal behavior in the face of information costs?

A Comparison to Existing Approaches

- The problem we study is very flexible
 - No in principle restriction on information structures
 - No restrictions on costs
- Nests other models of information acquisition
 - Shannon Mutual Information (fixed or costly)
 - Shannon Capacity
 - Fixed signals
 - Partitions
- Can mimic a hard constraint by setting costs to ∞
- Conditions we provide are necessary and sufficient in finite data sets
 - Easily applied to laboratory data
 - Possible to apply it to non-experimental data

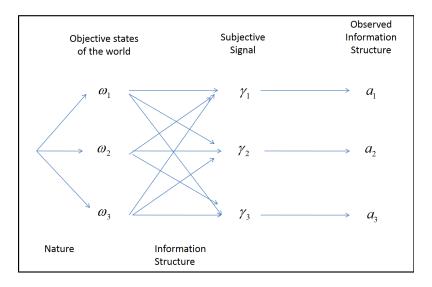
Observing Information Structures

- Key observation: State dependent stochastic choice data tells us a lot about the information structure a decision maker has used
- Assume that decision maker is 'well behaved'
 - Chooses each action in response to at most one signal
 - No mixed strategies one action per signal
- Information structure can be observed directly from state dependent stochastic choice
 - For each chosen action a there is an associated signal $ar{\gamma}^a$
 - Probability of signal $\bar{\gamma}^a$ in state ω is the same as the probability of choosing *a* in ω

$$\bar{\pi}(\bar{\gamma}^{\mathbf{a}}|\omega) = P(\mathbf{a}|\omega)$$

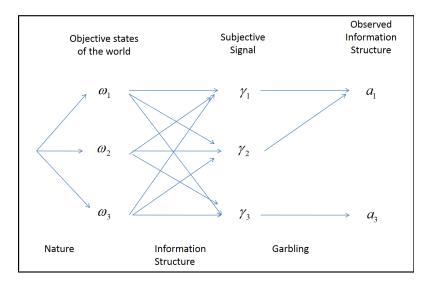
• Call $\bar{\pi}$ the 'revealed information structure'

Recovering Attention Strategy

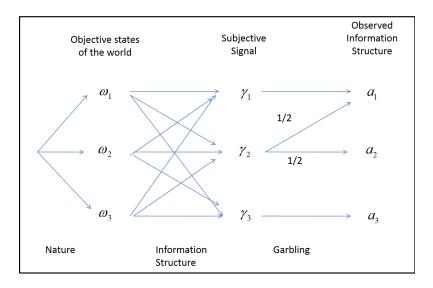


Observing Attentional Strategies

- What if decision maker is not well behaved?
 - Chooses some act in more than one subjective state
 - Mixed strategies more than one act in an subjective state



Mixing



Observing Information Structures

- Can still recover revealed information structure $ar{\pi}$
- Not necessarily the same as true information structure π
- But will be a garbling of the true information structure
 - i.e. π is statistically sufficient for $\bar{\pi}$
- There exists a stochastic $|\Gamma(\pi)|\times |\Gamma(\bar{\pi})|$ matrix B such that if we
 - Apply π
 - For each state γ^i move to state $ar\gamma^j$ with probability B^{ij}
 - We obtain $\bar{\pi}$
- i.e.

$$egin{array}{rcl} \sum\limits_{j}B^{ij}&=&1 \;orall\; j\ ar{\pi}(ar{\gamma}^{j}|\omega)&=&\sum\limits_{i}B^{ij}\pi(\gamma^{i}|\omega)\;orall\; j \end{array}$$

• Let $G(A, \pi)$ be the *gross value* of using information structure π in decision problem A

$$G(A, \pi) = \max_{C:\Gamma(\pi) \to \Delta(A)} \sum_{\Omega} \mu(\omega) \sum_{\gamma \in \Gamma(\pi)} \pi(\gamma|\omega) \left(\sum_{\mathbf{a} \in A} C(\mathbf{a}|\gamma) U(\mathbf{a}(\omega)) \right)$$

- An information structure π is sufficient for information structure π' if and only if

$$G(A, \pi) \geq G(A, \pi') \ \forall \ A$$

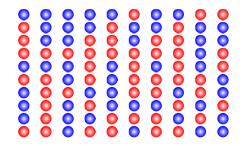
Characterizing Rational Inattention

- Choice of act optimal given attentional strategy
 - [Caplin and Martin 2014]
- Choice of attention strategy optimal

Characterizing Rational Inattention

- Choice of act optimal given attentional strategy
 - [Caplin and Martin 2014]
- Choice of attention strategy optimal

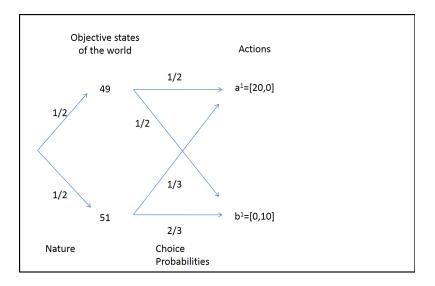
Optimal Choice of action



Action	Payoff 49 red balls	Payoff 51 red balls
a ¹	20	0
\mathbf{b}^1	0	10

Prior: {0.5, 0.5}

Optimal Choice of actions



Optimal Choice of actions

• Posterior probability of 49 red balls when action b was chosen

$$Pr(\omega = 49|b \text{ chosen}) = \frac{Pr(\omega = 49, b \text{ chosen})}{Pr(b \text{ chosen})}$$
$$= \frac{\frac{1}{4}}{\frac{1}{4} + \frac{2}{6}} = \frac{3}{7}$$

• But for this posterior

$$\frac{3}{7}U(a(49)) + \frac{4}{7}U(a(51)) = \frac{3}{7}20 + \frac{4}{7}0 = 8.6$$
$$\frac{3}{7}U(b(49)) + \frac{4}{7}U(b(51)) = \frac{3}{7}0 + \frac{4}{7}10 = 5.7$$

Condition 1

• To avoid such cases requires

$$\mathbf{a} \in \arg\max_{\mathbf{a} \in \mathcal{A}} \sum_{\Omega} \Pr(\boldsymbol{\omega} | \mathbf{a}) U(\mathbf{a}(\boldsymbol{\omega}))$$

• Which implies

Condition 1 (No Improving Action Switches) For every chosen action a

$$\sum \mu(\omega) P_{A}(\mathbf{a}|\omega) \left[u(\mathbf{a}(\omega)) - u(b(\omega)) \right] \geq 0.$$

for all $b \in A$

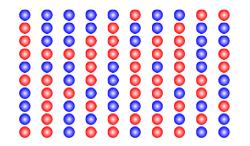
- If $\bar{\pi}$ not true information structure, condition still holds
 - a optimal at all posteriors in which it is chosen
 - Must also be optimal at convex combination of these posteriors

Characterizing Rational Inattention

- Choice of act optimal given attentional strategy
- Choice of attention strategy optimal

Optimal Choice of Attention Strategy

Decision Problem 1

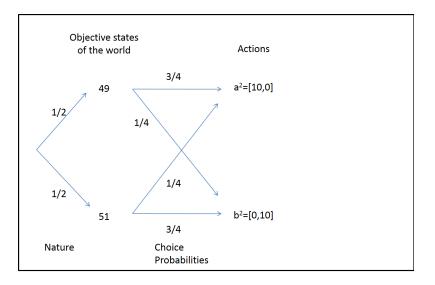


Action	Payoff 49 red balls	Payoff 51 red balls
a ²	10	0
b ²	0	10

Prior: {0.5, 0.5}

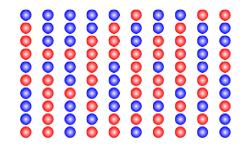
Optimal Choice of Attention Strategy

Decision Problem 1



Optimal Choice of Attention Strategy

Decision Problem 2

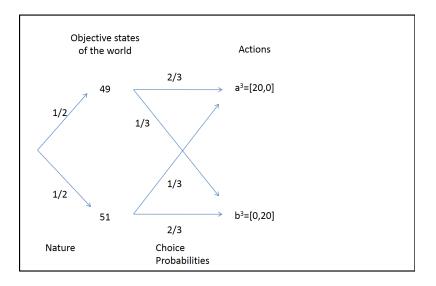


action	Payoff 49 red balls	Payoff 59 red balls
a ³	20	0
b ³	0	20

Prior: {0.5, 0.5}

Optimal Choice of Attention Strategy

Decision Problem 2



Optimal Choice of Attention Strategy

G(A, π) is the gross value of using information structure π in decision problem A

G	$\bar{\pi}^1$	$\bar{\pi}^2$
$\{a^1, b^1\}$	$7\frac{1}{2}$	$6\frac{2}{3}$
$\{a^2, b^2\}$	15	$13\frac{1}{3}$

Cost function must satisfy

$$\begin{array}{rcl} G(\{a^1,b^1\},\pi^1)-K(\pi^1) & \geq & G(\{a^1,b^1\},\pi^2)-K(\pi^2) \\ G(\{a^2,b^2\},\pi^2)-K(\pi^2) & \geq & G(\{a^2,b^2\},\pi^1)-K(\pi^1) \end{array}$$

• Which implies

• Surplus must be maximized by correct assignments

$$\begin{split} & G(\{\mathbf{a}^1, \mathbf{b}^1\}, \pi^1) + G(\{\mathbf{a}^2, \mathbf{b}^2\}, \pi^2) \\ & \geq G(\{\mathbf{a}^1, \mathbf{b}^1\}, \pi^2) + G(\{\mathbf{a}^2, \mathbf{b}^2\}, \pi^1) \end{split}$$

- What if $\bar{\pi} \neq \pi$?
- We know that revealed and true information structure must give same value in DP it was observed

$$G(A^i, \bar{\pi}^i) = G(A^i, \pi^i)$$

• Also, as π weakly Blackwell dominates $ar{\pi}$

$$G(A^i, \bar{\pi}^j) \leq G(A^i, \pi^j)$$

• Surplus must be maximized by correct assignments

$$G(\{a^1, b^1\}, \bar{\pi}^1) + G(\{a^2, b^2\}, \bar{\pi}^2)$$

$$\geq G(\{a^1, b^1\}, \pi^2) + G(\{a^2, b^2\}, \pi^1)$$

- What if $\bar{\pi} \neq \pi$?
- We know that revealed and true information structure must give same value in DP it was observed

$$G(A^i, \bar{\pi}^i) = G(A^i, \pi^i)$$

• Also, as π weakly Blackwell dominates $ar{\pi}$

$$G(A^i, \bar{\pi}^j) \leq G(A^i, \pi^j)$$

• Surplus must be maximized by correct assignments

$$G(\{a^1, b^1\}, \bar{\pi}^1) + G(\{a^2, b^2\}, \bar{\pi}^2)$$

$$\geq G(\{a^1, b^1\}, \bar{\pi}^2) + G(\{a^2, b^2\}, \bar{\pi}^1)$$

- What if $\bar{\pi} \neq \pi$?
- We know that revealed and true information structure must give same value in DP it was observed

$$G(A^i, \bar{\pi}^i) = G(A^i, \pi^i)$$

• Also, as π weakly Blackwell dominates $ar{\pi}$

$$G(A^i, \bar{\pi}^j) \leq G(A^i, \pi^j)$$

Condition 2

- To guarantee the existence of a cost function requires a stronger condition
- Condition 2 (No Improving Attention Cycles) For an observed sequence of decision problems $A^1...A^K$ and associated revealed information structures $\bar{\pi}^1...\bar{\pi}^K$

$$\begin{array}{l} G(A^{1},\bar{\pi}^{1}) - G(A^{1},\bar{\pi}^{2}) \\ + G(A^{2},\bar{\pi}^{2}) - G(A^{2},\bar{\pi}^{3}) \\ + \dots \\ + G(A^{K},\bar{\pi}^{K}) - G(A^{K},\bar{\pi}^{1}) \\ \geq & 0 \end{array}$$

• Note that this condition relies only on observable objects

Theorem

For any data set $\{D, P\}$ the following two statements are equivalent

- 1 {D, P} satisfy NIAS and NIAC
- 2 There exists a $K : \Pi \to \mathbb{R}$, $\{\pi^A\}_{A \in D}$ and $\{C^A\}_{A \in D}$ such that π^A and $C^A : \Gamma(\pi^A) \to A$ are optimal and generate P^A for every $A \in D$

Proof.

- $2 \rightarrow 1$ Trivial
- $1 \rightarrow 2$ Rochet [1987] (literature on implementation)

- This problem is familiar from the implementation literature
- Say there were a set of environments $X_1...,X_N$ and actions $B_1...,B_M$ such that the utility of each environment and each state is given by

$$u(X_i, B_j)$$

- Say we want to implement a mechanism such that action $Y(X_i)$ is taken at in each environment.
- We need to find a taxation scheme $\tau: B_1..., B_M \to \mathbb{R}$ such that

$$u(X_i, Y(X_i)) - \tau(Y(X_i)) \geq u(X_i, B) - \tau(B)$$

$$\forall B_1 \dots B_M$$

• This is the same as our problem.

• Our problem is equivalent to finding $\theta: D \to \mathbb{R}$, such that, for all $A_i, A_j \in D$

$$G(A_i, \pi^i) - \theta(A_i) \ge G(A_i, \pi^j) - \theta(A_j)$$

- Just define $K(\pi) = \theta(A_i)$ if $\pi = \pi^i$ for some *i*, or $= \infty$ otherwise
- We can apply a proof from Rockerfellar [1970] to show that NIAC gives us this condition

Proof

• Pick some arbitrary A₀ and define

$$T(A) = \sup_{\textit{all chains s.t } A_0 \textit{ to } A = A_M} \sum_{n=1}^{M-1} G(A_{i+1}, \pi^i) - G(A_i, \pi^i)$$

- NIAC implies that $T(A_0) = 0$
- Also note that

$$T(A_0) \ge T(A_i) + G(A_0, \pi^i) - G(A_i, \pi^i)$$

• So $T(A_i)$ is bounded

• Furthermore, for any A_i A_j we have

$$T(A_i) \geq T(A_j) + G(A_i, \pi^j) - G(A_j, \pi^j)$$

• So, setting
$$\theta(A_j) = G(A_j, \pi^j) - T(A_j)$$
, we get

$$G(A_i, \pi^i) - \theta(A_i) \ge G(A_i, \pi^j) - \theta(A_j)$$

• What about additional conditions on cost function?

- Weakly Monotonic with respect to Blackwell?
- Allow mixing?
- Positive with free inattention?
- We get these 'for free'
- Any behavior that can be rationalized can be rationalized with a cost function that has these properties
- Can also extend to 'sequential rational inattention'

Recovering Costs

- Say $\bar{\pi}^A$ is the revealed attn. strategy in decision problem A.
- Assuming weak monotonicity, it must be that

$$K(\bar{\pi}^A) - K(\pi) \le G(A, \bar{\pi}^A) - G(A, \pi)$$

• If $\bar{\pi}^B$ is used in decision problem B then we can bound relative costs

$$G(B, \bar{\pi}^A) - G(B, \bar{\pi}^B) \le K(\bar{\pi}^A) - K(\bar{\pi}^B) \le G(A, \bar{\pi}^A) - G(A, \bar{\pi}^B)$$

• Tighter bounds can be obtained using chains of observations

$$\max_{\{A^{1}...A^{n}\in D|A^{1}=B,A^{n}=A\}}\sum \left[G(A^{i},\bar{\pi}^{A^{i}})-G(A^{i},\bar{\pi}^{A^{i+1}})\right]$$

$$\leq K(\bar{\pi}^{A})-K(\bar{\pi}^{B})$$

$$\leq \min_{\{A^{1}...A^{n}\in D|A^{1}=A,A^{n}=B\}}\sum \left[G(A^{i},\bar{\pi}^{A^{i}})-G(A^{i},\bar{\pi}^{A^{i+1}})\right]$$

What If Utility and Priors Are Unobservable?

- Can add 'there exists' to the statement of the NIAS and NIAC conditions
- Data has an optimal costly attention representation if there exists $\mu \in \Delta(\Omega)$ and $U: X \to \mathbb{R}$ such that
 - NIAS is satisfied
 - NIAC is satisfied
- If µ is known but U is unknown, conditions are linear and (relatively) easy to check
- If μ and U are unknown, conditions are harder to check
 - Still not vacuous
- Alternatively, can enrich data so that these objects can be recovered

Rational Inattention vs Random Utility

- Alternative model of random choice: Random Utility
 - 1 Agent receives some information about the state of the world
 - 2 Draws a utility function from some set
 - **3** Chooses in order to maximize utility given information
- Key differences between Random Utility and Rational Inattention
 - 1 Random Utility allows for multiple utility functions
 - 2 Rational Inattention allows attention to vary with choice problem
- How can we differentiate between the two?

- Random Utility implies monotonicity
- For any two decision problems $\{A, A \cup b\}$, $a \in A$ and $b \notin A$

$$P_A(a|\omega) \ge P_{A\cup b}(a|\omega)$$

 Rational Inattention can lead to violations of monotonicity (Ergin, Matejka and McKay)

Act	Payoff 49 red dots	Payoff 51 red dots
а	23	23
b	20	25
С	40	0

 Adding act c to {a, b} can increase the probability of choosing b in state 51

Experimental Results

- We perform experiments to test two things
 - Whether subjects actively adjust their attention
 - Whether they do so optimally (concentrate on NIAC)
- Rule out alternative models with fixed attention
 - Signal Detection Theory
 - Random Utility Models

Experimental Results

- Experiment 1: Extensive Margin
- Experiment 2: Spillovers
- Experiment 3: Intensive Margin

Table 1: Experiment 1									
Decision		Payoffs							
Problem	U(a(1))	$U(a(1)) \mid U(a(2)) \parallel U(b(1)) \mid U(b(2))$							
1	2	0	0	2					
2	10	0	0	10					
3	20	0	0	20					
4	30	0	0	30					

- Two equally likely states
- Two acts (*a* and *b*)
- Symmetric change in the value of making correct choice
- 46 subjects

• Surplus must be maximized by correct assignments. In two act two state case,

 $\Delta \tau_1 \Delta (\textit{U}(\textit{a}(1)) - \textit{U}(\textit{b}(1)) + \Delta \tau_2 \Delta (\textit{U}(\textit{b}(2) - \textit{U}(\textit{a}(2)) \geq 0$

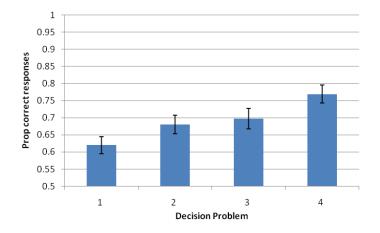
- au_m probability of correct decision in state m
- U(a(m)) U(b(m)) benefit of correct decision in state m
- In this experiment

$$\tau_1^4 + \tau_2^4 \geq \tau_1^3 + \tau_2^3 \geq \tau_1^2 + \tau_2^2 \geq \tau_1^1 + \tau_2^1$$

Do People Optimally Adjust Attention?

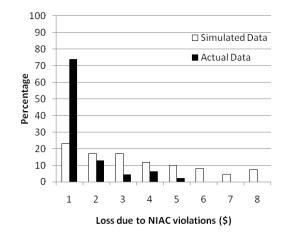
- Alternative model: Choose optimally conditional on fixed signal
 - e.g. Signal Detection theory
- In general, choices can vary with incentives
 - Changes optimal choice in posterior state
- But not in this case
 - Optimal to choose a if $\gamma_1 > 0.5$, regardless of prize
- Change in choice between decision problems rules out Signal Detection Theory
 - Also rational inattention with fixed entropy

Testing NIAC: Experiment 1



- 51% of subjects significantly increase proportion of correct choices
- 83% show no significant violation of NIAC

Testing NIAC: Experiment 1



- Individual level data
- Benchmarked against Random Choice

Experiment 2: Spillivers

Table 2: Experiment 2										
	Payoffs									
DP	U(a(1))	U(a(1)) U(a(2)) U(b(1)) U(b(2)) U(c(1)) U(c(2))								
5	23	23	20	25	n/a	n/a				
6	23	23	20	25	30	10				
7	23	23	20	25	35	5				
8	23	23	20	25	40	0				

Experiment 2: Spillover

	Table 3								
DP	P(b 1)	P(b 2)	P(c 1) - P(c 2)						
5	17%	23%	n/a						
6	15%	31%	18%						
7	12%	33%	18%						
8	13%	39%	29%						

• Random utility implies

$$P_5(b|2) \ge P_j(b|2)$$
 for $j \in \{6, 7, 8\}$

• NIAC implies

 $P_8(c|1) - P_8(c|2) \ge P_7(c|1) - P_7(c|2) \ge P_6(c|1) - P_6(c|2).$

Experiment 3								
	Payoffs							
Decision Problem	$U_1^a \mid U_2^a \mid U_3^a \mid U_4^a \parallel U_1^b \mid U_2^b \mid U_3^b \mid U_4^b$							
9	1	0	10	0	0	1	0	10
10	10	0	1	0	0	10	0	1
11	1	0	1	0	0	1	0	1
12	10	0	10	0	0	10	0	10

- 4 states of the world: 29, 31, 69, 71 red balls
- Change which states it is important to differentiate between

Experiment 3									
	Payoffs								
Decision Problem	$ \begin{vmatrix} U_1^a & U_2^a & U_3^a & U_4^a & U_1^b & U_2^b & U_3^b & U_4^b \end{vmatrix} $								
9	1	0	10	0	0	1	0	10	
10 10 0 1 0 0 10 0 1							1		

- Comparing DP 9 and 10
 - DP9: important to differentiate between states 3 and 4
 - DP10: important to differentiate between states 1 and 2

$$\left(\tau_1^{10} + \tau_2^{10}\right) + \left(\tau_3^9 + \tau_4^9\right) \ge \left(\tau_3^{10} + \tau_4^{10}\right) + \left(\tau_1^9 + \tau_2^9\right),$$

- Average LHS: 73%, Average RHS: 65% (24 subjects)
- Overall 79% of subjects in line of NIAC

- We have developed simple non-parametric test for costly information acquisition
 - 'Revealed Preference' for information costs
 - Nests other models of information acquisition
- Introduced State Dependent Stochastic Choice data as an important tool for studying information acquisition
- Introduced an experimental design which allows collection of such data
 - Showed that active choice of attention is important
 - Optimal model of information acquisition passes simple tests
- Providing theoretical and experimental foundations for 'rational inattention'
 - Becomes increasingly important as amount of available information increases