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Shannon Information Costs

We have so far considered what we can say when we are
agnostic about information costs

We now move consider behavior under a specific assumed cost
for information

Based on the concept of Shannon Entropy
Popular in the applied literature

Consider this the ‘Cobb Douglas’ case to last week’s ‘revealed
preference’ treatment

Read Cover and Thomas for more information
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Shannon Entropy

e Shannon Entropy is a measure of how much ‘missing
information’ there is in a probability distribution

e In other words - how much we do not know, or how much we
would learn from resolving the uncertainty

e For a random variable X that takes the value x; with
probability p(x;) for i = 1...n, defined as

H(X) = E(=In(p(x))

= _Zp |n P:



Shannon Entropy
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e Can think of it as how much we learn from result of
experiment



Justification for Shannon Entropy

e Say we want our measure of entropy to have the following
features

e Depends only on the probability distribution
 H(X) =H(p)
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Justification for Shannon Entropy

Say we want our measure of entropy to have the following
features

Depends only on the probability distribution
Maximized at a uniform probability distribution

Unaffected by adding zero probability state
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Justification for Shannon Entropy

Say we want our measure of entropy to have the following
features

Depends only on the probability distribution
Maximized at a uniform probability distribution
Unaffected by adding zero probability state
Additive

e H(X,Y) = H(X) + £, p(x)H(Y]x)
e (Most ‘controversial’ - other entropies relax this assumption)



Justification for Shannon Entropy

Say we want our measure of entropy to have the following
features

Depends only on the probability distribution
Maximized at a uniform probability distribution
Unaffected by adding zero probability state
Additive

Then Entropy must be of the form (Khinchin 1957)

H(X) = —k ZP(X:') In(p;)



Entropy and Information Costs

e Related to the notion of entropy is the notion of Mutual
Information

(X, Y) =3 p(x.y) '°gm

e Measure of how much information one variable tells you about
another

e Note that /(X,Y) =0 if X and Y are independent



Entropy and Information Costs

e Note also that mutual information can be rewritten in the
following way

I(X,Y) = ) ) p(xy) jog PLY)_

p(x)

= ZZP(W In P(x|y) - Zpry In p(x
= Zp Zp x|y)InP(x]y) — Zp In p(x

= H(X) = E(H(X]Y))

e Difference between entropy of X and the expected entropy of
X once Y is known



Mutual Information and Information Costs

e Mutual Information between prior and posteriors can be used
to model information costs

K(p,) = A(H(p) — E(H(7))

_ Yyer(m) T(7) o v (@) Iny(w)
A( Ly n(@) I (w) )

e Can be justified by information theory

e Homework



Shannon Entropy

Key feature: Entropy is strictly concave

So negative of entropy is strictly convex

Say we choose a signal structure with two posteriors 7y and 7/
It must be that

P(y)y+P(Y)y = n

SO

P(Y)H(y) +P(Y)H(Y) < H(P()y+p(r)Y)
= H(u)

So the cost of ‘learning something’ is always positive
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Solving Rational Inattention Models

¢ Solving Rational Attention models can be difficult analytically

e General approach - ignore choice of information structure,
instead focus on joint distribution of choice variable and state

e i.e. choose state dependent stochastic choice directly

e Example (Matejka and McKay 2015) - continuous state space,
finite action space



Solving Rational Inattention Models

e P set of all state contingent stochastic choice functions for
some state space () and set of acts A

e Remember P(a|w) is the probability of choosing a in state w

e Remember that, for P € P, the mutual information between
choices a and objective state w is given by

1(A, Q) = H(A) — H(A|Q)



Solving Rational Inattention Models

e Decision problem of agent is to choose P € P to maximize

Y | u(a(w)P(alw)u(da)

acAvwW

“A [z/ alw) In P(a|w)p(dw) + ¥ P(a)In P(a)
acA

acA

e Subject to

Y P(alw) =1 Almost surely
acA

e Where P(a) is the unconditional probability of choosing a



The Lagrangian Function

¥ [ u(a(@)P(alw)n(dw)

acA
[Z / alw) In P(alw)u(dw) + Y _ P(a)In P(a)
acA

acA
- [ p@)

Y P(alw) - 1] p(dw)
acA
e p(w) Legrangian multiplier on the condition that
Yaca P(alw) =1
e FOC WRT P(a|w) (assuming >0)

u(a(w)) —p(w) +AllnP(a) +1—InP(alw) —1] =0

e Note that this is a convex problem



FOC WRT P(a|w) (assuming >0)

u(a(w)) —p(w) + AllnP(a) +1 —In P(a|lw) — 1]

Which gives
P(alw) = P(a) exp S
Plug this into
Y Plaw) = 1
acA

Which in turn gives...

Solution

=0



Comments

P(a) exp el
u(a(w))
ZaGA P(a) exp 4

P(alw) =

Similar in form to logistic random choice
If alternatives are ex ante identical, this is logistic choice

Otherwise choice probabilities are ‘warped’ by P(a) - which
contains information on the prior value of each option

As costs go to zero, deterministically pick best option in that
state

As costs go to infinity, deterministically pick the best option
ex ante



Comments

The above is not a complete solution
Does not solve for P(a)

One can completely characterize solution in closed form if one
knows what acts are chosen with positive probability

In general, not all acts will be chosen (see Matejka and Sims
2010)

Also, they are only necessary not sufficient conditions

e Always satisfied by assuming that only one act will be chosen



Necessary and Sufficient Conditions

e Caplin, Dean and Leahy [2015]

e Let z(a(w)) be ‘normalized utilities’

2(alw)) = e { X2

e Z,(P) be ‘unconditional expected utility’ in state w
generated by P

Zo(P) =} P(b)z(b(w))

beA



Necessary and Sufficient Conditions

e P is consistent with rational inattention with mutual
information costs if and only if

E[P‘(“’)ZV“(“’))} < lallacA

w Zw(P)
; [W} = lallast. P(a)>0

and
P(alw) = W



Necessary and Sufficient Conditions

e P is consistent with rational inattention with mutual
information costs if and only if

P[] e

w

(
w@za@)] _ o
;[ 25 } Lall ast P(a) >0

e P(a)z(a(c0))
a)z(a(w
P(alw) =
@) ==7Z.P)
@ ldentify correct unconditional choice probabilities

e Equality condition for chosen actions
e Check inequality condition for unchosen actions
e Those not good enough at prior beliefs
e Big advantage of necessary and sufficient conditions

® Read off conditional choice probabilities



The Linear Quadratic Gaussian Case

One case in which this problem becomes more tractable is if
the input and output signal are both normal

The entropy of a normal variable X ~ N(u,02) is given by
1
H(Y) = 5 In(2mec?)
If Y and X are both normal, then

HYX) = [ () [ F1)In(rd()d(x)

x y

As y|x is distributed normally with variance (1 — p?)c?, this
becomes

H(YIX) = /Xf(x);ln(zneaix)d(x)

5 In(27te(1 — pQ)U)Q,)



The Linear Quadratic Gaussian Case

As mutual information is given by
H(Y) = H(Y|X)

1 1
= 3 In(27tec) — > In(27te(1 — p*)0)

In this case, the mutual information is given by
1
ZIn(1—p?
5 In(1—p%)
So information costs depend only on the covariance of the two
signals!
It turns out that joint normality is optimal if the utility

function is quadratic in the relationship between the objective
and subjective state

e Choice of variance on some normally distributed error term

However, note that some papers assume normality (this is
bad)
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A Posterior Based Approach

e Can write the objective function as

Y. P(Y) (W(7) = AH(7)) + AH(p)
Y€ ()

e Where

e P(7) is the unconditional probability of posterior v

e W(y)=Xycqr(w)u(a*(w)) be the expected utility of a*,
optimal choice at posterior ¢y

e H(7) is the entropty associated with 7



Implications

e For each posterior we can define the net utility

N(y) = W(y) — AH(7)

e Optimal strategy: Choose posteriors to maximize the weighted
average of N(7y), subject to

Y. P(y)
v€l(m)

e If same number of posteriors as states this pins down P(7)
once posteriors have been chosen
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Value as a Weighted Average of Net Utility
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Finding the Optimal Strategy
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e Optimal posteriors identified by hyperplane that supports the
set of feasible net utilities.



Theorem

Theorem
Given decision problem (y, A) € T x F a set of posteriors are
rationally inattentive if and only if:

® Invariant Likelihood Ratio (ILR) Equations for Chosen
Acts: given a,b € B, and w € (),

YW _ 2w
2(a(@) ~ 2(b(@))

® Likelihood Ratio Inequalities for Unchosen Acts: given
act a chosen with positive probability and b € A,

L L@EZH z(b(w)) < 1.

we)

w
w
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Behavioral Properties

e Locally Invariant Posteriors
e Invariant Likelihood Ratio and Response to Incentives

e Symmetry



Behavioral Properties

e Locally Invariant Posteriors
e Invariant Likelihood Ratio and Response to Incentives

e Symmetry



Locally Invariant Posterior

e Example: 2 states, 2 actions

Action | Payoff in state 1 Payoff in state 2
fl X 0
f? 0 X




Finding the Optimal Strategy
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e Optimal posteriors identified by hyperplane that supports the
set of feasible net utilities.
e What happens when priors change?
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Behavior for prior>0.5
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Locally Invariant Posteriors

Theorem (Locally Invariant Posteriors)

If a set of posteriors {7y°},., are optimal for decision problem

{u, A} and are also feasible for {y’, A} then they are also optimal
for that decision problem

e Choice probabilities move ‘mechanically’ with prior to
maintain posteriors

o Useful in, for example, models in which consumers are
rationally inattentive to quality

e As the prior distribution of quality changes, posterior beliefs do
not

e See Martin [2014]



Behavioral Properties

e Locally Invariant Posteriors
e Invariant Likelihood Ratio and Response to Incentives

e Symmetry



Invariant Likelihood Ratio and Responses to Incentives

e For chosen actions our condition implies

u(a(w)) — u(b(w)) _
in7°(w) — n75(w)

e Constrains how DM responds to changes in incentives



Invariant Likelihood Ratio - Example

Table 1: Experiment 1
Decision Payoffs
Problem | u(a(1)) | u(a(2)) || u(b(1)) | u(b(2))
1 2 0 0 2
2 10 0 0 10
3 20 0 0 20
4 30 0 0 30
2 10

=.=A

In32(2) — In7%(2) _ In7°(10) — In3°(10)

e One observation pins down A

e Determines behavior in all other treatments



Invariant Likelihood Ratio - Example

% of
accurate
choices

Tau(2)

e Observation of choice accuracy for x = 2 pins down A



Invariant Likelihood Ratio - Example

% of
accurate
choices

Tau(2)

e Implies expansion path for all other values of x

e This does not hold in our experimental data



Estimated Cost

Invariant Likelihood Ratio - An Experimental Test
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Posterior Separable Cost Functions

e Subjects do not respond enough to changes in incentives
e This is not due to curvature of the utility function
e In the paper we introduce a set of cost functions that

e Maintain structure of Shannon Costs
o Allow for different response to incentives



Posterior Separable Cost Functions
e Shannon Cost function:

K(m,u) =

e Posterior- Separable cost functions:

K(m, u) = [ )+ ), w . ]
yer(m
e where
—A (ZQ 7(w) [%D ifp#1landp#2
Lipay(7) = A (Lar()Iny(w)) if p=1.
—A (Zﬂ'y w)'%ﬁf‘)’)) if o =2.



Response to Incentives: Posterior Separable Cost Functions

Probability of correctchoice
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Posterior Prohability

Fitting the Data
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Behavioral Properties

e Locally Invariant Posteriors
e Invariant Likelihood Ratio and Response to Incentives

e Symmetry



Symmetry

Shannon Mutual Information has the property of symmetry

Behavior invariant to the labelling of states

u(a(w)) — u(b(w)) _
In7?(w) = In7*(w)

Optimal beliefs depend only on the relative value of actions in
that state

Implies that there is no concept of ‘perceptual distance’



A Simple Example

e N equally likely states of the world {1,2....., N}

e Two actions

Payoffs
States 1% %—l—l,..,N
action f 10 0
action g 0 10

e Mutual Information predicts a quantized information structure

e Optimal information structure has 2 signals
e Probability of making correct choice is independent of state

o (42)
1+ exp (“(io )

—




Predictions for the Simple Problem - Shannon

Probability

Probability of
choosing correct
act

Probability of
choosing act f

State
N/2

e Probability of correct choice does not go down near threshold



Predictions for the Simple Problem - Shannon

Probability

Probability of
choosing correct
act

Probability of
choosingact f

State
N/2

e Not true of other information structures (e.g. uniform signals)



Symmetry

e Shannon Model makes strong predictions for the simple
problem

e Accuracy not affected by closeness to threshold
e In contrast to (e.g.) uniform signals

e Which model is correct?
e |t may depend on the perceptual environment

e Test prediction in two different environments



Environment 1 (Balls)

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

Action | Payoff < 50 Red Payoff > 50 Red




Environment 2 (Letters)
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Action | Payoff state letter < N Payoff state letter > N

f 10 0
g 0 10




Experiment

2 treatments
‘Balls’ Experiment

e 23 subjects
e Vary the number of states

‘Letters’ Experiment

e 24 subjects
e Vary the relative frequency of the state letter

Test whether probability of correct choice is lower nearer the
threshold



Balls Experiment
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e Probability of correct choice significantly correlated with
distance from threshold (p<0.001)
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Letters Experiment

| 7 State Letters
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e Probability of correct choice does vary between states
e But is not correlated with distance from threshold (p=0.694)
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