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Shannon Information Costs

• We have so far considered what we can say when we are
agnostic about information costs

• We now move consider behavior under a specific assumed cost
for information

• Based on the concept of Shannon Entropy
• Popular in the applied literature
• Consider this the ‘Cobb Douglas’case to last week’s ‘revealed
preference’treatment

• Read Cover and Thomas for more information
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Shannon Entropy

• Shannon Entropy is a measure of how much ‘missing
information’there is in a probability distribution

• In other words - how much we do not know, or how much we
would learn from resolving the uncertainty

• For a random variable X that takes the value xi with
probability p(xi ) for i = 1...n, defined as

H(X ) = E (− ln(p(xi ))
= −∑

i
p(xi ) ln(pi )



Shannon Entropy

• Can think of it as how much we learn from result of
experiment



Justification for Shannon Entropy

• Say we want our measure of entropy to have the following
features

• Depends only on the probability distribution
• H(X ) = H(p)
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Justification for Shannon Entropy

• Say we want our measure of entropy to have the following
features

• Depends only on the probability distribution
• Maximized at a uniform probability distribution

• Unaffected by adding zero probability state
• H({p1....pM }) = H({p1....pM , 0})



Justification for Shannon Entropy

• Say we want our measure of entropy to have the following
features

• Depends only on the probability distribution
• Maximized at a uniform probability distribution

• Unaffected by adding zero probability state
• Additive

• H(X ,Y ) = H(X ) +∑x p(x)H(Y |x)
• (Most ‘controversial’- other entropies relax this assumption)



Justification for Shannon Entropy

• Say we want our measure of entropy to have the following
features

• Depends only on the probability distribution
• Maximized at a uniform probability distribution

• Unaffected by adding zero probability state
• Additive
• Then Entropy must be of the form (Khinchin 1957)

H(X ) = −k∑
i
p(xi ) ln(pi )



Entropy and Information Costs

• Related to the notion of entropy is the notion of Mutual
Information

I (X ,Y ) = ∑
x

∑
y
p(x , y) log

p(x , y)
p(x)p(y)

• Measure of how much information one variable tells you about
another

• Note that I (X ,Y ) = 0 if X and Y are independent



Entropy and Information Costs

• Note also that mutual information can be rewritten in the
following way

I (X ,Y ) = ∑
x

∑
y
p(x , y) log

p(x , y)
p(x)p(y)

= ∑
x

∑
y
p(x , y) log

p(x |y)
p(x)

= ∑
y

∑
x
p(x , y) lnP(x |y)−∑

x
∑
y
p(x , y) ln p(x)

= ∑
y
p(y)∑

x
p(x |y) lnP(x |y)−∑

y
p(x) ln p(x)

= H(X )− E (H(X |Y ))

• Difference between entropy of X and the expected entropy of
X once Y is known



Mutual Information and Information Costs

• Mutual Information between prior and posteriors can be used
to model information costs

K (µ,π) = λ(H(µ)− E (H(γ))

= λ

(
∑γ∈Γ(π) π(γ)∑Ω γ (ω) lnγ(ω)

−∑Ω µ(ω) ln µ (ω)

)
• Can be justified by information theory

• Homework



Shannon Entropy

• Key feature: Entropy is strictly concave
• So negative of entropy is strictly convex
• Say we choose a signal structure with two posteriors γ and γ′

• It must be that

P(γ)γ+ P(γ′)γ′ = µ

• so

P(γ)H(γ) + P(γ′)H(γ′) < H(P(γ)γ+ p(γ′)γ′)

= H(µ)

• So the cost of ‘learning something’is always positive
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Solving Rational Inattention Models

• Solving Rational Attention models can be diffi cult analytically
• General approach - ignore choice of information structure,
instead focus on joint distribution of choice variable and state

• i.e. choose state dependent stochastic choice directly

• Example (Matejka and McKay 2015) - continuous state space,
finite action space



Solving Rational Inattention Models

• P set of all state contingent stochastic choice functions for
some state space Ω and set of acts A

• Remember P(a|ω) is the probability of choosing a in state ω

• Remember that, for P ∈ P , the mutual information between
choices a and objective state ω is given by

I (A,Ω) = H(A)−H(A|Ω)



Solving Rational Inattention Models

• Decision problem of agent is to choose P ∈ P to maximize

∑
a∈A

∫
ω
u(a(ω))P(a|ω)µ(dω)

−λ

[
∑
a∈A

∫
ω
P(a|ω) lnP(a|ω)µ(dω) + ∑

a∈A
P(a) lnP(a)

]

• Subject to
∑
a∈A

P(a|ω) = 1 Almost surely

• Where P(a) is the unconditional probability of choosing a



The Lagrangian Function

∑
a∈A

∫
ω
u(a(ω))P(a|ω)µ(dω)

−λ

[
∑
a∈A

∫
ω
P(a|ω) lnP(a|ω)µ(dω) + ∑

a∈A
P(a) lnP(a)

]

−
∫

ω
ρ(ω)

[
∑
a∈A

P(a|ω)− 1
]

µ(dω)

• ρ(ω) Legrangian multiplier on the condition that
∑a∈A P(a|ω) = 1

• FOC WRT P(a|ω) (assuming >0)

u(a(ω))− ρ(ω) + λ[lnP(a) + 1− lnP(a|ω)− 1] = 0

• Note that this is a convex problem



Solution

• FOC WRT P(a|ω) (assuming >0)

u(a(ω))− ρ(ω) + λ[lnP(a) + 1− lnP(a|ω)− 1] = 0

• Which gives

P(a|ω) = P(a) exp
u(a(ω))−ρ(ω)

λ

• Plug this into

∑
a∈A

P(a|ω) = 1

⇒ exp
ρ(ω)

λ = ∑
a∈A

P(a) exp
u(a(ω))

λ

• Which in turn gives...



Comments

P(a|ω) = P(a) exp
u(a(ω))

λ

∑a∈A P(a) exp
u(a(ω))

λ

• Similar in form to logistic random choice

• If alternatives are ex ante identical, this is logistic choice
• Otherwise choice probabilities are ‘warped’by P(a) - which
contains information on the prior value of each option

• As costs go to zero, deterministically pick best option in that
state

• As costs go to infinity, deterministically pick the best option
ex ante



Comments

• The above is not a complete solution
• Does not solve for P(a)
• One can completely characterize solution in closed form if one
knows what acts are chosen with positive probability

• In general, not all acts will be chosen (see Matejka and Sims
2010)

• Also, they are only necessary not suffi cient conditions
• Always satisfied by assuming that only one act will be chosen



Necessary and Suffi cient Conditions

• Caplin, Dean and Leahy [2015]
• Let z(a(ω)) be ‘normalized utilities’

z(a(ω)) = exp
{
U(a(ω))

λ

}
• Zω(P) be ‘unconditional expected utility’in state ω
generated by P

Zω(P) = ∑
b∈A

P(b)z(b(ω))



Necessary and Suffi cient Conditions

• P is consistent with rational inattention with mutual
information costs if and only if

∑
ω

[
µ(ω)z(a(ω))
Zω(P)

]
≤ 1 all a ∈ A

∑
ω

[
µ(ω)z(a(ω))
Zω(P)

]
= 1 all a s.t. P(a) > 0

and

P(a|ω) = P(a)z(a(ω))
Zω(P)

1 Identify correct unconditional choice probabilities
• Equality condition for chosen actions
• Check inequality condition for unchosen actions

• Those not good enough at prior beliefs
• Big advantage of necessary and suffi cient conditions

2 Read off conditional choice probabilities
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The Linear Quadratic Gaussian Case

• One case in which this problem becomes more tractable is if
the input and output signal are both normal

• The entropy of a normal variable X ∼ N(µ, σ2x ) is given by

H(Y ) =
1
2
ln(2πeσ2x )

• If Y and X are both normal, then

H(Y |X ) =
∫
x
f (x)

∫
y
f (y |x) ln(y |x)d(y)d(x)

• As y |x is distributed normally with variance (1− ρ2)σ2y , this
becomes

H(Y |X ) =
∫
x
f (x)

1
2
ln(2πeσ2y |x )d(x)

=
1
2
ln(2πe(1− ρ2)σ2y )



The Linear Quadratic Gaussian Case

• As mutual information is given by

H(Y )−H(Y |X )

=
1
2
ln(2πeσ2y )−

1
2
ln(2πe(1− ρ2)σ2y )

• In this case, the mutual information is given by
1
2
ln(1− ρ2)

• So information costs depend only on the covariance of the two
signals!

• It turns out that joint normality is optimal if the utility
function is quadratic in the relationship between the objective
and subjective state
• Choice of variance on some normally distributed error term

• However, note that some papers assume normality (this is
bad)
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A Posterior Based Approach

• Can write the objective function as

∑
γ∈Γ(π)

P(γ) (W (γ)− λH(γ)) + λH(µ)

• Where
• P(γ) is the unconditional probability of posterior γ
• W (γ) = ∑ω∈Ω γ(ω)u(a∗(ω)) be the expected utility of a∗,
optimal choice at posterior γ

• H(γ) is the entropty associated with γ



Implications

• For each posterior we can define the net utility

N(γ) = W (γ)− λH(γ)

• Optimal strategy: Choose posteriors to maximize the weighted
average of N(γ), subject to

∑
γ∈Γ(π)

P(γ)γ = µ

• If same number of posteriors as states this pins down P(γ)
once posteriors have been chosen



Constructing the Net Utility Function



Value as a Weighted Average of Net Utility



Finding the Optimal Strategy

• Optimal posteriors identified by hyperplane that supports the
set of feasible net utilities.



Theorem

Theorem
Given decision problem (µ,A) ∈ Γ×F a set of posteriors are
rationally inattentive if and only if:

1 Invariant Likelihood Ratio (ILR) Equations for Chosen
Acts: given a, b ∈ B, and ω ∈ Ω,

γa(ω)

z(a(ω))
=

γb(ω)

z(b(ω))

2 Likelihood Ratio Inequalities for Unchosen Acts: given
act a chosen with positive probability and b ∈ A,

∑
ω∈Ω

[
γa(ω)

z(a(ω))

]
z(b(ω)) ≤ 1.
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Behavioral Properties

• Locally Invariant Posteriors

• Invariant Likelihood Ratio and Response to Incentives

• Symmetry
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Locally Invariant Posterior

• Example: 2 states, 2 actions

Action Payoff in state 1 Payoff in state 2
f1 x 0
f 2 0 x



Finding the Optimal Strategy

• Optimal posteriors identified by hyperplane that supports the
set of feasible net utilities.

• What happens when priors change?



Behavior at 0.5 Prior



Behavior for prior>0.5



Locally Invariant Posteriors

Theorem (Locally Invariant Posteriors)
If a set of posteriors {γa}a∈A are optimal for decision problem
{µ,A} and are also feasible for {µ′,A} then they are also optimal
for that decision problem

• Choice probabilities move ‘mechanically’with prior to
maintain posteriors

• Useful in, for example, models in which consumers are
rationally inattentive to quality

• As the prior distribution of quality changes, posterior beliefs do
not

• See Martin [2014]



Behavioral Properties
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Invariant Likelihood Ratio and Responses to Incentives

• For chosen actions our condition implies

u(a(ω))− u(b(ω))
ln γ̄a(ω)− ln γ̄b(ω)

= λ

• Constrains how DM responds to changes in incentives



Invariant Likelihood Ratio - Example

Table 1: Experiment 1
Decision Payoffs
Problem u(a(1)) u(a(2)) u(b(1)) u(b(2))
1 2 0 0 2
2 10 0 0 10
3 20 0 0 20
4 30 0 0 30

2
ln γ̄a(2)− ln γ̄b(2)

=
10

ln γ̄a(10)− ln γ̄b(10)
= ... = λ

• One observation pins down λ

• Determines behavior in all other treatments



Invariant Likelihood Ratio - Example

• Observation of choice accuracy for x = 2 pins down λ



Invariant Likelihood Ratio - Example

• Implies expansion path for all other values of x
• This does not hold in our experimental data



Invariant Likelihood Ratio - An Experimental Test



Posterior Separable Cost Functions

• Subjects do not respond enough to changes in incentives
• This is not due to curvature of the utility function
• In the paper we introduce a set of cost functions that

• Maintain structure of Shannon Costs
• Allow for different response to incentives



Posterior Separable Cost Functions

• Shannon Cost function:

K (π, µ) = λ

[
−H(µ) + ∑

γ∈Γ(π)
π(γ)H(γ)

]
.

• Posterior- Separable cost functions:

K (π, µ) = λ

[
−L(µ) + ∑

γ∈Γ(π)
π(γ)L(γ)

]
.

• where

L{ρ,λ}(γ) =


−λ

(
∑Ω γ(ω)

[
γ(ω)1−ρ

(ρ−1)(ρ−2)

])
if ρ 6= 1 and ρ 6= 2;

−λ (∑Ω γ(ω) lnγ(ω)) if ρ = 1.

−λ
(

∑Ω γ(ω) ln γ(ω)
γ(ω)

)
if ρ = 2.

,



Response to Incentives: Posterior Separable Cost Functions



Fitting the Data
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• Invariant Likelihood Ratio and Response to Incentives

• Symmetry



Symmetry

• Shannon Mutual Information has the property of symmetry
• Behavior invariant to the labelling of states

u(a(ω))− u(b(ω))
ln γ̄a(ω)− ln γ̄b(ω)

= λ

• Optimal beliefs depend only on the relative value of actions in
that state

• Implies that there is no concept of ‘perceptual distance’



A Simple Example

• N equally likely states of the world {1, 2.....,N}
• Two actions

Payoffs
States 1, ...N2

N
2 + 1, ..,N

action f 10 0
action g 0 10

• Mutual Information predicts a quantized information structure
• Optimal information structure has 2 signals
• Probability of making correct choice is independent of state

exp
(
u(10)

λ

)
1+ exp

(
u(10)

λ

)



Predictions for the Simple Problem - Shannon

• Probability of correct choice does not go down near threshold



Predictions for the Simple Problem - Shannon

• Not true of other information structures (e.g. uniform signals)



Symmetry

• Shannon Model makes strong predictions for the simple
problem

• Accuracy not affected by closeness to threshold
• In contrast to (e.g.) uniform signals

• Which model is correct?
• It may depend on the perceptual environment

• Test prediction in two different environments



Environment 1 (Balls)

Action Payoff ≤ 50 Red Payoff > 50 Red
f 10 0
g 0 10



Environment 2 (Letters)

Action Payoff state letter < N Payoff state letter ≥ N
f 10 0
g 0 10



Experiment

• 2 treatments
• ‘Balls’Experiment

• 23 subjects
• Vary the number of states

• ‘Letters’Experiment
• 24 subjects
• Vary the relative frequency of the state letter

• Test whether probability of correct choice is lower nearer the
threshold



Balls Experiment

• Probability of correct choice significantly correlated with
distance from threshold (p<0.001)



Letters Experiment

• Probability of correct choice does vary between states
• But is not correlated with distance from threshold (p=0.694)
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